

Attachment H

Greenhouse Gas Emissions Impact Assessment

Melbourne Airport Jet Pipeline Project

Greenhouse Gas Emissions Impact Assessment

Viva Energy Australia

2023-03-15

Document control record

Document prepared by:

Aurecon Australasia Pty Ltd

ABN 54 005 139 873 Aurecon Centre Level 8, 850 Collins Street Docklands, Melbourne VIC 3008 PO Box 23061 Docklands VIC 8012 Australia

- T +61 3 9975 3000
- **F** +61 3 9975 3444
- E melbourne@aurecongroup.com
- W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Docι	ument control						à	urecon	
Report title		Greenhouse Gas Emissions	Greenhouse Gas Emissions Impact Assessment						
Document code		521511-100000-REP-EN-00	21	Project	number	521	511		
File path		https://aurecongroup.sharepoint.com/:w:/r/sites/521511/3_Develop/For%20Delivery/521 511-100000-REP-EN-0021.docx							
Client		Viva Energy Australia							
Client contact		David Di Giovine	Client reference						
Rev	Date	Revision details/status	Autho	or	Reviewer		Verifier (if required)	Approver	
0	2022-08-19	Issued to Client	Saeid	Charani	Alison Dilger		-	J. Mahon	
1	2022-10-12	Updated based on Client comments and issued to Client	Saeid	Charani	Alison Dilger		-	J. Mahon	
2	2022-10-27	Updated based on Client comments and issued to Client	Saeid	Charani	Alison Dilger		-	J. Mahon	
3	2022-12-13	Final	Saeid	Charani	Alison Dilger		-	J. Mahon	
4	2023-03-15	Final	Saeid	Charani	Alison Dilger		-	J. Mahon	
Current revision		4							

Approval			
Name	Saeid Charani	Name	Josh Mahon
Title	Consultant, Sustainability and Climate Change	Title	Manager – Environment and Planning

Contents

Execut	tive sun	nmary		1
Abbrev	viations			3
1	Introd	uction a	nd scope of works	4
	1.1	Purpos	se of this document	4
	1.2	Project	t description	4
		1.2.1	Project components	5
		1.2.2	Indicative construction activities and duration	6
		1.2.3	Indicative operation activities	7
2	Metho	dology .		8
	2.1	GHG e	missions scopes	8
	2.2	Project	t boundary	9
	2.3	Key as	sumptions and limitations	11
3	Leaisl	ation an	d policy summary	
4	Baseli	ne GHG	emissions impact assessment	
5	Const	ruction a	and operation emissions impact assessment	
6	Qualita	ative clir	mate change impact assessment	
7	Potent	tial GHG	emissions reduction initiatives	16
Refere	nces			17

Appendices

Appendix A - Calculation sheets

Figures

Figure 1-1 Melbourne Airport Jet Pipeline location (Source: ESRI)

Figure 2-1 An illustration of the definitions of different emissions scopes (GHG Protocol, 2013)

Figure 5-1 Comparison of the Project GHG emissions against the baseline emissions

Figure 5-2 Comparison of the cumulative emissions of baseline and the Project over time

Tables

Table E-1 Summary of the Project's GHG emissions

Table 1-1 Summary of key pipeline data

Table 1-2 Indicative construction activities and plant

Table 2-1 GHG protocol criteria for inclusion of Scope 3 emissions in the operational boundary

Table 2-2 GHG emissions sources and scopes for relevant construction and operation activities

Table 2-3 Rationale for exclusion of some emission sources

Table 3-1 Summary of key relevant legislation and policy

Table 4-1 Summary of the baseline emissions scenarios

Table 4-2 Baseline GHG emissions

Table 5-1 Summary of total GHG emissions associated with the construction and operation of the Project

Executive summary

This report assesses the impact of greenhouse gas (GHG) emissions associated with Viva Energy's Melbourne Airport Jet Pipeline Project (the Project), as part of its Pipeline Licence Application. The assessment compares the Project's construction and operation GHG emissions impact against the baseline scenario of jet fuel delivery via truck transportation. The assessment considers future changes to jet fuel demand.

Project overview

The Project is an approximately 6.7 km long buried jet fuel pipeline (DN 350 mm), connecting the existing Altona to Somerton jet fuel pipeline to the jet fuel storage infrastructure at Melbourne Airport. The Project aims to support Melbourne Airport's growing jet fuel needs over the next 20-30 years. In addition, the pipeline will increase the supply security of jet fuel for the airport and reduce the reliance on road transportation for jet fuel supply.

Existing conditions – GHG emissions baseline

The baseline GHG emissions scenario accounts for the current jet fuel delivery process, which includes the existing jet fuel pipeline system (Altona to Somerton pipeline, and Somerton to Tullamarine Airport pipeline) supplemented annually with substantial road deliveries of jet fuel from both Melbourne and Geelong.

The baseline scenario assumes that the existing fuel delivery system would continue for the project timeline of 2025 to 2065. The Melbourne Airport Preliminary Draft Master Plan (Melbourne Airport, 2022) has forecasted the demand until 2042 and the demand estimate beyond 2042 is based on assumptions. The baseline considers three fuel demand growth rates, namely reference, low and high scenarios to capture potential future uncertainties. The baseline GHG emissions are estimated to be 261, 106 and 492 kilo-tonnes of carbon dioxide equivalent (kt CO₂-e) for the reference, low and high scenarios respectively (Table 4-2). GHG emissions are about 95% Scope 1 and 5% Scope 3 emissions.

GHG impact assessment

The estimated GHG emissions for the Project are 45.3 kt CO_2 -e with 5.7 kt CO_2 -e associated with construction activities and 39.6 kt CO_2 -e associated with operation of the jet fuel pipeline. Table E-1 shows a summary of the Project's GHG emissions.

Total GHG emissions	Scope 1 (Direct) (t CO ₂ -e)	Scope 2 (Indirect) (t CO ₂ -e)	Scope 3 (Indirect) (t CO ₂ -e)	Total (t CO₂-e)
Construction	2,499	64	3,178	5,741
Operation	10,575	25,301	3,734	39,610

Table E-1 Summary of the Project's GHG emissions	Table E-1	Summary	of the	Project's	GHG	emissions
--	-----------	---------	--------	-----------	-----	-----------

Although the extent of future road operations is currently unknown, by removing the need to transport jet fuel by road, the pipeline could lead to an overall greenhouse gas emissions reduction of 216.1 kt CO₂-e over the design life, with savings realised after approximately 6 years of operation.

Conclusions and recommendations

This impact assessment found that the Project can reduce GHG emissions by 83% over the design life of the pipeline, when compared to the current delivery system for jet fuel. It is expected that the Project is able to support the growing air traffic (and therefore jet fuel) demand associated with both an increasing number of

¹ Note: numbers may not add up exactly due to rounding.

passengers and tonnes of air freight forecasted in the Melbourne Airport Preliminary Draft Master Plan (Melbourne Airport, 2022). The assessment indicated the Project's GHG emissions would show savings in comparison with the baseline (reference) GHG emissions after approximately 6 years of operation.

Additionally, implementation of the Project will likely increase the resilience and security of jet fuel supply against the physical and transition risks of climate change, as well as increased safety by reducing the chance of spills related to road accidents.

The following potential initiatives can further reduce the Project's GHG emissions impact during the construction and operation stages. Assessing the feasibility of these initiatives is outside the scope of this report.

- 1. **Minimise the use of electricity** by selecting energy efficient pumps, plant and equipment during planning and design phases, employing energy efficient operation strategies and incorporating energy management systems for the operation life of the Project.
- 2. **Maximise the use of green electricity** in operation (up to 10.9% further reduction compared to the baseline). This can be achieved by installing renewable energy sources on-site (e.g., solar panels on terminal sheds/buildings) and/or by purchasing renewable electricity.
- 3. Maximise the use of low emission and energy efficient vehicles, plant and equipment (e.g., hybrid excavators, hybrid site vehicles) to reduce fuel use during construction (up to 0.9% further reduction compared to the baseline) and use of hybrid or electric vehicles during operation (up to 4.3% further reduction compared to the baseline).

Abbreviations

Term	Definition
CO ₂ -e	Carbon Dioxide equivalent
CSIRO	Commonwealth Scientific and Industrial Research Organisation
EES	Environmental Effects Statement
EP Act	Environmental Protection Act
GHG	Greenhouse gas
HDD	Horizontal Directional Drilling
ICCP	Impressed Current Cathodic Protection
ISO	International Organisation for Standardisation
JUHI	Joint User Hydrant Installation
NGAF	National Greenhouse Account Factors
NGER	National Greenhouse and Energy Reporting
RFI	Request for information
VIC	Victoria

1 Introduction and scope of works

Viva Energy Australia (Viva Energy) is proposing to construct and operate a new jet fuel pipeline, to support growing demand at Melbourne Airport.

Melbourne Airport is Australia's second largest airport. Annual passenger numbers are expected to almost double by 2042 – increasing from 37 million to more than 76 million passengers per year (Melbourne Airport, 2022). The freight tonnes are also expected to increase from 448kT to 980kT. In line with the projected increases in aircraft movements, jet fuel requirements are expected to increase significantly.

Currently, fuel is transported to the joint user hydrant installation (JUHI) facility via a combination of the pipeline system (Altona to Somerton pipeline, and Somerton to Tullamarine Airport pipeline) and trucks. The current pipeline system is supplemented annually with substantial road deliveries of jet fuel from both Melbourne and Geelong. The development of the new pipeline will provide faster replenishment of fuel stocks, reduce traffic on roads and provide a more robust fuel supply chain.

The proposed pipeline aims to:

- help meet the increasing demand for jet fuel and support future growth at Melbourne Airport
- increase the supply security of jet fuel, which will contribute to the Victorian state economy
- reduce the reliance on road transport for jet fuel supply with fewer trucks required to deliver fuel to the airport
- improve safety by reducing the potential for spills in case of road accidents or rollover.

1.1 Purpose of this document

This report assesses the impact to greenhouse gas (GHG) emissions associated with Viva Energy's Melbourne Airport Jet Pipeline Project (the Project), as part of the Pipeline Licence Application. The assessment compares the Project's construction and operation GHG emissions impact with the baseline scenario of jet fuel delivery to Melbourne Airport via road transportation. The report includes potential initiatives to further reduce GHG emissions associated to the Project.

1.2 **Project description**

The Project proposes the construction and operation of a new pipeline to form a direct connection between the jet fuel storage infrastructure at Melbourne Airport and the existing Altona to Somerton pipeline that follows the southern boundary of Tullamarine (located south of the Western Ring Road (M80)).

The pipeline would commence at a section of the Altona to Somerton pipeline located south of the Western Ring Road (M80) (near the Airport Drive exit) and link into the existing Melbourne Airport JUHI facility (located at Marker Road, Tullamarine). Figure 1-1 shows the proposed pipeline alignment.

Figure 1-1 Melbourne Airport Jet Pipeline location (Source: ESRI)

1.2.1 **Project components**

The project comprises of the following key operational components:

- A new pipeline to transport jet fuel. The pipeline will be approximately 6.7 km in length and fully buried for its entire length to a minimum depth of 1200 mm below ground level (bgl) with a 7 to 10 m permanent final easement.
- Pig launcher and receiver sites located at each end of the pipeline. These are made of steel and used to launch instruments during initial commissioning of the pipeline to clear any debris or water and during operation to record any defects in the pipe.
- An impressed current cathodic protection (ICCP) system to protect the pipe. The choice of ICCP system will most probably have negligible power consumption.
- Inlet and outlet metering stations which provides flow analysis for the leak detection system.

The pipeline

The proposed pipeline comprises approximately 6.7 km of buried jet fuel pipeline. It has been assumed that the pipe will be manufactured in overseas pipe mills from high grade steel plates. It will be buried for its entire length to a minimum depth of 1200 mm below ground level. Table 1-1 summarises the key information relating to the pipeline.

Table 1-1 Summary of key pipeline data

Key pipeline data					
Length	6.7 km				
Material	High strength steel pipe - Manufacturing code API 5L, product specification level PSL 2 with an X56 grade.				

aurecon

Nominal diameter	DN 350 mm
Maximum target flow rate	~800 m3/h. The initial operating flow rate would be 400 m3/h.
Pipe wall thickness	11.8 mm
Design life	40 years

1.2.2 Indicative construction activities and duration

Pipeline construction is proposed to commence in Q3 of 2024 and the pipeline is proposed to be operational by Q3 of 2025. This is subject to Viva Energy Board approvals, land access, finalisation of design, award of Contracts and procurement timeframes and is subject to the grant of project approvals within certain timeframes.

Construction activities for the Project and indicative plant and equipment required are show in Table 1-2. It should be noted that the third column shows the approximate cumulative duration for each activity and does not represent the construction duration as some activities might occur simultaneously. There would be construction site offices and lighting in each construction section.

Table 1-2 Indicative construction activities and plant

Construction activity	Detail of activity	Approximate cumulative duration	Plant and Equipment Used
Setting up work areas Clear and grade	Before construction can commence, work areas must be set up appropriately. These include lay down areas for equipment, construction material stockpiles and setup areas. Clear and grade involves preparing the pipeline easement and extra workspaces for construction.	4 weeks	35 ton Excavator x 2 14G Grader x 1 D7 Dozer x 1
Excavation	A specialised rotary trenching machine or excavator is used to dig the trenches along the pipeline route. Any material removed is placed on the side of the trench (stockpiled), within the construction set up area. Trenchless construction is used in more complex or environmentally sensitive areas. Trenchless construction methods used for this Project include: HDD Thrust boring.	Trenching: 15 weeks Horizontal Directional Drilling (HDD): 36 weeks Thrust boring: 1 week	Trenching45 ton Excavator with Hammer x 2Rock Chain TrencherHDDHDD rig x 135 ton Excavator x 1Mud tanksGenerator (self-bunded or within container)Vacuum Truck x 2Thrust boringRotary auger x 135 ton Excavator x 1Mud tanksGenerator (self bunded or within container)Vacuum Truck x 2Thrust boringRotary auger x 135 ton Excavator x 1Mud tanksGenerator (self bunded or within container)Vacuum Truck x 2

Construction activity	Detail of activity	Approximate cumulative duration	Plant and Equipment Used
Pipe stringing and welding	Once the pipe lengths have been laid out or 'strung' along the construction set up area,	36 weeks	35 ton Excavator with vac lift x 1
	qualified welders join the lengths of pipes together. Welds are inspected using x-ray or ultrasonic		572 side boom x 1
	equipment to ensure their quality and are then		Bending machine
			Prime movers (stringing trucks) x 1
			Skid truck x 2
			Light Truck with Welding Machines x 2
			Tack Rig x 1
Lowering In	After final quality assurance checks, each	36 weeks	35 ton Excavator x 2
	completed pipe section is lowered into the trench using specialist side boom tractors and		572 Side Booms x 2
	excavators.		Loader x 2
Backfill	When the pipe is in place, it is backfilled with suitable fill material (padding) to protect the		350 Padding Machine x 1
	objects. The topsoil is then re-instated over the disturbed trench area to the contour of the land so that		Trucks to haul in bedding material x 3
			Flowcon Truck x 1
	groundcover can be rehabilitated.		Grader x 1
			D7 Dozer x 1
Quality	Rigorous quality assurance, inspection and testing	8 weeks	Fill pump
Assurance	occurs during and after installation to confirm that the pipeline integrity meets or exceeds the design criteria.		High pressure squeeze pump
	Using water, the pipe is pressure tested		750cfm Compressor
	(hydrotested) to ensure it is fit for operational service.		1200cfm Compressor for drying
			Vacuum drying unit
Demobilisation	Disturbed areas will be reinstated and may include	4 weeks	35 ton Excavator x 2
and initial	re-contouring to match existing landforms. Topsoil conserved during the construction process is re-		Graders 16G x 1
renabilitation	spread over areas used for construction.		Grader 14G x 1
	approval requirements and landowner		D7 Dozer
	considerations.		Tractor - reseeding

1.2.3 Indicative operation activities

When commissioned, the pipeline would be owned, operated and maintained by Viva Energy. Following the reinstatement of land as part of the pipeline construction, the land would be generally returned to its previous use.

The Project has been designed with an operational life of 40 years. The entire pipeline will require scheduled patrol and monitoring using a utility vehicle to drive along the pipeline on a daily basis (5 days per week). When in operation, instruments (metal loss detection tool) will be used to record any defects in the pipe (wall thickness reduction or other defects such as dents caused by third party interference). This will occur initially every 10 years and then as the pipeline ages it may be necessary to run the metal loss detection tool every 5 years. Material use for maintenance would be negligible.

During operation the pipeline would require general lighting, flood lights and control devices at both ends. The existing Newport terminal pumping station will pump the jet fuel through the new pipeline to Melbourne Airport. The pump has a capacity of 400 m³/h currently and a potential for an upgrade if needed.

aurecon

2 Methodology

The GHG emissions impact assessment was undertaken with reference to the following documents:

- National Greenhouse Gas and Energy Reporting (NGER) (measurement) Determination 2008 under the NGER Act (Australian Government, 2008), and the data available from National Greenhouse Account Factors (NGAF) (Department of Industry, Science, Energy and Resour, 2021).
- Greenhouse Gas Protocol (GHG Protocol), the World Business Council for Sustainable Development and the World Resources Institute
- ISO14064: Greenhouse Gases Part 1: Specification with guidance at the organisation level for quantification and reporting of greenhouse gas emissions and removals (The British Standards Institution, 2019) and Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements (The British Standards Institution, 2019)

The GHG emissions were calculated for:

- 1. The baseline scenario (current situation), with consideration for projected future emissions, should the pipeline not be constructed.
- 2. The project, including embodied, construction and operation emissions.

The GHG emissions for the Project were then compared to the baseline scenario GHG emissions, for the three jet fuel demand growth scenarios (reference, low and high). Opportunities to reduce the Project's GHG emissions were identified and are discussed in Section 7 of the report.

The baseline GHG emissions considers existing conditions and includes emissions from fuel transportation from Melbourne and Geelong. The categories and scope of the Project's GHG emissions are presented in the next section.

A high-level qualitative comparison of the climate resilience of the baseline and pipeline options and potential resilience enhancement strategies are additionally provided based on the literature (refer to Section 6).

2.1 GHG emissions scopes

This report includes Scope 1, Scope 2 and Scope 3 GHG emissions associated with the construction and operation of the Project, that are described as follows.

- Scope 1 emissions direct GHG emissions from sources that are owned or operated by a reporting
 organisation (examples include combustion of diesel in company-owned vehicles or used in on-site
 plant and equipment) (GHG Protocol, 2013)
- Scope 2 emissions Indirect GHG emissions associated with the import of energy from another source (examples include import of electricity from the grid, or heat) (GHG Protocol, 2013)
- Scope 3 emissions Other indirect emissions, other than energy imports (above) which are a direct
 result of the operations of the organisation, but from sources not owned or operated by them and
 due to upstream or downstream activities (examples include indirect upstream emissions associated
 with the extraction, production and transport of purchased construction materials; and business
 travel (by ship, air or rail)).

An illustration of these definitions is shown in Figure 2-1.

Figure 2-1 An illustration of the definitions of different emissions scopes (GHG Protocol, 2013)

The activities and GHG emission sources have been determined following consultation with the design team and based on past GHG impact assessments for similar infrastructure construction projects. Although Scope 3 emissions are not a mandatory reporting requirement, it is included herein for a holistic inclusion of all significant emissions sources related to the Project. In line with GHG Protocol, the criteria for including Scope 3 emissions within the Project's operational boundary are outlined in Table 2-1.

Table 2-1 GHG protocol criteria for inclusion of Scope 3 emissions in the operational boundary

Criteria	Description
Size	They are large (or believed to be large) relative to the company's scope 1 and scope 2 emissions.
Risk	They contribute to the company's GHG risk exposure
Stakeholders	They are deemed critical by key stakeholders (e.g., customers, suppliers, investors, or civil society)
Influence	There are potential emissions reductions that could be undertaken or influenced by the company.

2.2 Project boundary

The project scope for the GHG emissions impact assessment includes the construction and operation activities related to the installation of the pipeline.

The organisational boundary of this assessment includes all Scope 1 (direct) and Scope 2 (indirect) emissions related to the project activities. Other indirect (Scope 3) emissions that are directly related to the project (for example, emissions associated with construction materials) are also considered.

Construction

The scope of the GHG emission assessment of the construction phase includes:

 construction of the new pipeline, including embodied emissions of materials and emissions related to the construction activities

- transportation of materials and project components to the site
- construction spoil and waste removal
- land use changes

Operation

The scope of the GHG emission assessment of the operation phase includes:

- existing road transport of jet fuel
- pumping jet fuel in the new pipeline
- maintenance of the new pipeline

It should be noted GHG emissions associated with the production of jet fuel and combustion of jet fuel are outside the boundary of this assessment.

A list of relevant GHG emissions sources associated with the Project construction and operation and the scope of the emissions is provide in Table 2-2.

Emissions category	Emissions source	Activity	Scope 1 (Direct)	Scope 2 (Indirect)	Scope 3 (Indirect)				
Construction									
Stationary energy	Fuel use	Stationary construction equipment	\checkmark		√				
Transport fuel	Fuel use	Mobile construction equipment, plant and site vehicles	\checkmark		√				
Transport fuel	Fuel use	Delivery of pipe, concrete and other project components to the site			V				
Waste	Waste	Spoil and waste removal			√				
Stationary energy	Electricity consumption	Electricity used to power construction plant (lighting towers etc) and site offices		V	V				
Land use changes	Vegetation removal / plantation	Clearance of vegetation because of the project (loss of carbon sink) or planting vegetation	\checkmark						
Embodied emissions	Materials	Embodied energy of construction materials			√				
Operation									
Stationary energy	Electricity consumption	Electricity used for pumping, control, lighting and maintenance		V	\checkmark				
Transport fuel	Fuel use	Mobile construction equipment used for maintenance activities	\checkmark		√				
Embodied emissions	Materials	Materials used for maintenance activities			√				
Transport fuel	Fuel use	Fuel consumption by trucks delivering the jet fuel	\checkmark		\checkmark				

Table 2-2 GHG emissions sources and scopes for relevant construction and operation activities

2.3 Key assumptions and limitations

This section provides a summary of the key assumptions and limitations related to this GHG emissions impact assessment report. The assessment of impacts, conclusions and potential GHG emissions reduction initiatives recommended in this report are based on the best information and assumptions available at the date of its preparation.

For this assessment, the best available data sources have been used via request for information (RFI) and consultation with the design team. Information that this assessment has been based on, including construction schedules and plant, may change, and works may differ throughout the construction and operation of the Project.

It is assumed that the electricity grid emissions factor will be zero from 2050, consistent with national and international zero emissions targets. Thus, grid emissions factors projections to 2030 are used (Department of Industry, Science, Energy and Resour, 2021) and extrapolated to 2050.

The projection of electrification and new generation of trucks (hydrogen, biodiesel and electric) is not in the scope of baseline estimation of this report. The projections of short distance heavy trucks availability in market (National Renewable Energy Laboratory, 2022) and the transition to zero emission transportation policy (Graham & Havas, 2021; Savvy, 2022) are considered in framing illustrative scenarios in Section 4. However, the capacity of existing infrastructure, roads, fuel system etc, and the availability of trucks to meet the increased jet fuel requirements for the baseline GHG emissions scenario has not been assessed.

Table 2-3 shows the rationale for exclusion of some GHG emission sources.

Emission sources	Emissions description	Rationale for exclusion
Purchased electricity	Electricity emissions associated with pumping jet fuel in the existing pipeline system (from Altona to Somerton, and from Somerton to JUHI)	This has not been considered as this would remain almost the same as the existing case once the Project is commissioned.
Fugitive emissions	Fugitive emissions from the jet fuel pipeline	This is assumed to be negligible for a liquid jet fuel under high pressure in a fully welded pipeline with ICCP and frequent monitoring.
Transport fuel	Emissions associated with the transport of work force and construction equipment	The project is located in Melbourne and in the vicinity of several equipment rentals. The work force is assumed to be procured locally with minimal use of private transport as public transport options are available. Thus, emissions from this would be negligible.
Embodied and operation emissions	Emissions associated with the decommissioning, and unplanned replacement and relocation of the pipeline	It is assumed the pipeline does not need to be replaced or relocated during its 40 years life and would be left buried under the ground after decommissioning.
Purchased electricity and fuel	Emissions associated with other baseline components such as JUHI Bridger pumps and similar.	It is assumed that these components will be less than 1% of the GHG emissions in baseline scenario and thus immaterial.

Table 2-3 Rationale for exclusion of some emission sources

It should be noted that these assumptions are based on the conservativeness principle of ISO14064-2 (The British Standards Institution, 2019). More detailed information on the data sources and assumptions are included in the calculation sheets in Appendix A.

aurecon

3 Legislation and policy summary

The relevant policy and legislation that applies to the Project, in the context of this GHG emissions impact assessment, is summarised in Table 3-1 below.

Table 3-1 Summary of key relevant legislation and policy

Policy / legislation	Description
National Greenhouse and Energy Reporting Act 2007 ('NGER Act'), and National Greenhouse and Energy Reporting (Measurement) Determination 2008	The NGER Act establishes the legislative framework for the NGER Scheme which is a national framework for reporting Scope 1 and 2 GHG emissions related to projects and corporations in Australia. The NGER Determination describes the methods and criteria for reporting Scope 1 and 2 GHG emissions, in accordance with the NGER Act.
National Greenhouse and Energy Reporting (Safeguard Mechanism) Rule 2015 (NGER Rule)	The NGER Rule provides a mechanism to prevent Australia's major GHG emitters to increase their operational Scope 1 annual GHG emissions beyond a threshold and applies to facilities that emit more than 100,000 tCO ₂ -e per year of Scope 1 emissions.
<i>Climate Change Act 2017</i> (Vic) ('Climate Change Act')	The Climate Change Act 2017 sets out legislative principles, targets and strategies to manage climate change risks and transition to a climate resilient and net zero emissions economy and community by 2050.
Environment Protection Act 2017 (Vic) ('EP Act')	The Environment Protection Act provides a framework to protect Victoria's air, water and land. It imposes legal obligation on entities and individuals to prevent pollution and environmental damage. The Environment Protection Act establishes the EPA to administer the Act, and its regulations and orders.

4 Baseline GHG emissions impact assessment

The GHG emissions for the baseline scenario are related to the existing pipeline system fuel delivery and supplementary road transportation of jet fuel from both Melbourne and Geelong to Melbourne Airport. The baseline GHG emissions have been established assuming that the existing fuel delivery settings will continue for the operational lifespan from 2025 to 2065. It should be noted that the airport demand is estimated until 2042 in the Melbourne Airport Preliminary Draft Master Plan (Melbourne Airport, 2022). The demand forecast post 2042 to 2065 is assumed to follow the same trend and may be uncertain. The baseline is framed for three scenarios based on changes to the jet fuel demand growth rate (linked to number of flights) and the share of diesel use in trucks in future. These scenarios are posed for illustrative purposes to capture future uncertainties in use of diesel in trucks and variations in jet fuel demand. These scenarios are summarised in Table 4-1.

Table 4-1 Summary of the baseline emissions scenarios

Scenario name	Description	Changing variable
Baseline (reference)	Assumes the airport fuel demand growth rate would constantly increase by 2.45% per year. The jet fuel delivery through the existing pipeline system would be utilised at its maximum capacity and the remaining jet fuel demand would be supplied by truck transportation from Melbourne and Geelong (50:50 split). 50% of jet fuel road transport would be by diesel trucks by the end of the Project design life.	Fuel delivered to the airport Diesel emission factor (related to share of diesel trucks from total jet fuel road transport)

aurecon

Scenario name	Description	Changing variable
Baseline (low)	Assumes the airport fuel demand growth rate would constantly increase by 1.96% per year (20% decrease compared to the reference case). The jet fuel delivery through the existing pipeline system would be utilised at its maximum capacity and the remaining jet fuel demand would be supplied by truck transportation from Melbourne and Geelong (50:50 split). Zero per cent of jet fuel road transport would be by diesel trucks by the end of the Project design life.	Fuel delivered to the airport Diesel emission factor (related to share of diesel trucks from total jet fuel road transport)
Baseline (high)	Assumes the airport fuel demand growth rate would constantly increase by 2.94% per year (20% increase compared to the reference case). The jet fuel delivery through the existing pipeline system would be utilised at its maximum capacity and the remaining jet fuel demand would be supplied by truck transportation from Melbourne and Geelong (50:50 split). 100% of jet fuel road transport would be by diesel trucks by the end of the Project design life.	Fuel delivered to the airport Diesel emission factor (related to share of diesel trucks from total jet fuel road transport)

The calculations of GHG emissions for the reference, low and high baseline scenarios indicated outputs of 261, 106 and 492 kt CO₂-e respectively (rounded to the nearest whole number), refer to Table 4-2. For the purposes of this assessment, it is assumed that all jet fuel deliveries are by Viva Energy trucks and hence the GHG emissions from these trucks are considered Scope 1 emissions. In reality, a proportion of the deliveries may be conducted by third parties, in which case they would fall under Scope 3 emissions. These scenarios are framed to capture the uncertainty range attributed to jet fuel demand projections.

Emissions category	Emissions source	Activity	Scope 1 (Direct) (t CO ₂ -e)	Scope 2 (Indirect) (t CO ₂ -e)	Scope 3 (Indirect) (t CO ₂ -e)	Total (t CO2-e)
Reference	Fuel use	Fuel consumption by trucks delivering the jet fuel	248,755	-	12,719	261,474
Low	Fuel use	Fuel consumption by trucks delivering the jet fuel	100,696	-	5,148	105,844
High	Fuel use	Fuel consumption by trucks delivering the jet fuel	468,279	-	23,943	492,222

Table 4-2 Baseline GHG emissions

5 Construction and operation emissions impact assessment

GHG emissions associated with the construction and operation of the Project are 45.3 kt CO_2 -e with 5.7 kt CO₂-e associated with construction and 39.6 kt CO₂-e associated with operation of the Project. It was found Scope 2 emissions contributed about 56% to the Project footprint, whilst Scope 1 and Scope 3 contributed 29% and 15% respectively to the footprint. A summary of the total GHG emissions of the Project is presented in Table 5-1.

Table 5-1 Summary of total GHG emissions associated with the construction and operation of the Project

Emissions category	Emissions source	Activity	Scope 1 (Direct) (t CO ₂ -e)	Scope 2 (Indirect) (t CO ₂ -e)	Scope 3 (Indirect) (t CO ₂ -e)	Total (t CO ₂ -e)
Construction						
Stationary energy	Fuel use	Stationary construction equipment	325	-	17	342
Transport fuel	Fuel use	Mobile construction equipment, plant and site vehicles	2,174	-	111	2,285
Transport fuel	Fuel use	Delivery of pipe, concrete and other project components to the site	-	-	239	239
Waste	Waste	Spoil and waste removal	-	-	52	52
Stationary energy	Electricity consumption	Electricity used to power construction plant (lighting towers etc) and site offices	-	64	7	71
Land use changes	Vegetation removal / plantation	Clearance of vegetation because of the project (loss of carbon sink) or planting vegetation	-	-	-	-
Embodied emissions	Materials	Embodied energy of construction materials	-	-	2,752	2,752
Operation						
Stationary energy	Electricity consumption	Electricity used for pumping, lighting and maintenance	-	25,301	3,194	28,495
Transport fuel	Fuel use	Mobile construction equipment used for maintenance activities	10,575 -		540	11,115
Embodied emissions	Materials	Materials used for maintenance activities	-	-	-	-
Transport fuel	Fuel use	Fuel consumption by trucks delivering the jet fuel	-	-	-	-

Note: numbers may not add up exactly due to rounding.

A large portion of construction emissions are related to embodied emissions (Scope 3) followed by emissions associated with the diesel consumption of plant and equipment and the followed by the delivery of project components and materials from overseas. Most of the Project's operational emissions are likely to be associated with the electricity consumption of pumps (approx. 28.5 kt CO₂-e over the Project design life) and the fuel use for maintenance and monitoring patrols (approx. 11.1 kt CO₂-e over the Project design life). Vegetation clearance seems to be negligible as most vegetation removed will likely be re-introduced following construction. Similarly, the embodied emissions of materials used for maintenance activities is assumed to be negligible. Assuming the Project's estimated supply capacity is met, it is expected that jet fuel delivery via road transportation would no longer be required

Figure 5-1 compares the total GHG emissions of the Project against three baseline scenarios, over the design life of the Project. The Project would reduce the GHG emissions associated with jet fuel delivery by 83%, from 261 to 45.2 kt CO_2 -e by 2065, compared to the baseline reference emission scenario.

Figure 5-1 Comparison of the Project GHG emissions against the baseline emissions

Figure 5-2 compares the cumulative emissions of baseline (reference case is shown with a solid line while the low and high scenarios are shown in shades) and the Project overtime. The Project would offer emissions reduction against the baseline (reference) scenario after 6 years of operation. The reduction in GHG emissions increases throughout the Project design life.

Figure 5-2 Comparison of the cumulative emissions of baseline and the Project over time

The Project's emissions can be further reduced by following a holistic environmental management framework that includes energy, resources and waste management plans. Some example measures are:

- Use of energy efficient and renewable energy technologies on site where possible, combined with purchasing of green power, can reduce GHG emissions associated with electricity use across the life of the Project.
- Use of zero emissions vehicles can reduce GHG emissions related to transportation.
- Operation of generators with bio diesel or a zero/low emission fuel source during construction can reduce diesel fuel usage and associated GHG emissions.
- Use of low carbon steel and concrete can reduce embodied materials GHG emissions.
- Offsetting residual GHG emissions by purchasing certified carbon offsets.

aurecon

6 Qualitative climate change impact assessment

The following relevant events are expected to impact Melbourne due to climate change (Department of Environment, 2015; Clarke JM, 2019; Grose, 2015):

- Increase in temperature year round
- More hot days and warm spells
- More frequent and more intense downpours
- Harsher fire weather and longer fire seasons
- Rising sea level
- Less rainfall and more time in drought.

Jet fuel delivered via road transportation may face additional delays, disruptions and accidents as a result of changing climatic conditions. Climate change may increase the risks to fuel delivery due to increased intensity and frequency of flooding, increased severity of storms and increased extreme temperatures. Generally speaking, the underground pipeline offers a higher resilience and reliability of supply against the physical risks of climate change.

7 Potential GHG emissions reduction initiatives

Considering that the jet fuel needs to be delivered to the airport to support growing demand of the Melbourne airport (associated with both number of passengers and tonnes of freight) by 2065, the results of this assessment show that the Project can reduce the overall emissions related to the delivery of jet fuel.

The following potential initiatives can further reduce the Project's GHG emissions impact during the construction and operation stages. Assessing the feasibility of these initiatives is outside the scope of this report.

- 1. **Minimise the use of electricity** by selecting energy efficient pumps, plant and equipment during planning and design phases, employing energy efficient operation strategies and incorporating energy management systems for the operation life of the Project.
- 2. Maximise the use of green electricity in operation (up to 10.9% further reduction compared to the baseline). This can be achieved by installing renewable energy sources on-site (e.g., solar panels on terminal sheds/buildings) and/or by purchasing renewable electricity.
- 3. Maximise the use of low emission and energy efficient vehicles, plant and equipment (e.g., hybrid excavators, hybrid site vehicles) to reduce fuel use during construction (up to 0. 9% further reduction compared to the baseline) and use of hybrid or electric vehicles during operation (up to 4.3% further reduction compared to the baseline).

References

Australian Government, 2008. National Greenhouse and Energy Reporting (Measurement) Determination 2008, s.l.: s.n.

Australian Government, 2008. National Greenhouse and Energy Reporting Regulations 2008, Australia: s.n.

Clarke JM, G. M. T. M. R. V. & H. C., 2019. Greater Melbourne Climate Projections 2019, Melbourne Australia: CSIRO.

Department of Environment, L. W. &. P., 2015. Climate-ready Victoria: Greater Melbourne, Australia: Victoria State Government.

Department of Industry, Science, Energy and Resour, 2021. Australia's emissions projections 2021, Australia: Australian Government.

Department of Industry, Science, Energy and Resour, 2021. National Greenhouse Account Factors, Australia: Australian Government.

GHG Protocol, 2013. Technical Guidance for Calculating Scope 3 Emissions; Version 1.0, USA: World Resources Institute.

Graham, P. & Havas, L., 2021. Electric vehicle projections 2021, Australia: CSIRO.

Grose, M. e. a., 2015. Southern Slopes Cluster Report, Climate Change in Australia Projections for Australia's Natural Resource Management Regions: Cluster Reports, Australia: eds. Ekström, M. et al., CSIRO and Bureau of Meteorology.

Infrastructure Victoria, 2019. Recycling and resource recovery infrastructure, Victoria: s.n.

Melbourne Airport, 2022. Master Plan 2022, Melbourne: s.n.

National Renewable Energy Laboratory, 2022. Decarbonizing Medium & Heavy-Duty On-Road Vehicles: Zero-Emission Vehicles Cost Analysis, United States: s.n.

Savvy, 2022. The State of Electric Trucks in Australia. [Online] Available at: <u>https://www.savvy.com.au/the-state-of-electric-trucks-in-australia/</u> [Accessed August 2022].

The British Standards Institution, 2019. Greenhouse gases - Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals (ISO 14064-1:2018), s.l.: s.n.

The British Standards Institution, 2019. Greenhouse gases - Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements (ISO 14064-2:2019), s.l.: s.n.

Appendix A - Calculation sheets

aurecon

Document Control

Project Na	me	Melbourne Airport Jet Fuel Pipeline Project					
Document	Name	GHG emissions assessr	ment				
Version No	Date	Updated By (Name)	Comment / Key Changes				
1	10/08/2022	Saeid Charani	Draft calculation sheet created				
А	18/08/2022	Saeid Charani	Amended the spreadsheet based on Alison Dilger review				
В	13/09/2022	Saeid Charani	Amended the spreadsheet based on Viva Energy's feedback				
С	28/10/2022	Saeid Charani	Amended the spreadsheet based on Viva Energy's feedback				
D	6/03/2023	Saeid Charani	Amended the spreadsheet based on changes to the construction method/time duratior				
	-						

Appendix A - Calculation sheets - Summary

Summary of total emissions of The Project and the baseline scenarios

			29%	56%	15%		_
Total emissions		Scope 1 (Direct) (t CO2-e)	Scope 2 (Indirect) (t CO2-e)	Scope 3 (Indirect) (t CO2-e)	Total (t CO2-e)		
The Project			13,074	25,365	6,912	45,351	
Baseline (reference scenario)			248,755	-	12,719	261,474	
					Reduction	83%	
The Project]
Emissions category	Emissions source	Activity	Scope 1 (t CO2-e)	Scope 2 (t CO2-e)	Scope 3 (t CO2-e)	Total (t CO2-e)	Notes
Construction							
Stationary energy	Fuel use	Stationary construction equipment	325	-	17	342	Refer to t

		(t CO2-e) (t CO2-e) (t CO2-e) (t CO2-e)		(t CO2-e)				
Construction								share o
Stationary energy	Fuel use	Stationary construction equipment	325	-	17	342	Refer to the Equipment and Plant sheet	
Transport fuel	Fuel use	Mobile construction equipment, plant and site vehicles	2,174	-	111	2,285	Refer to the Materials and Transportation, and Waste and Spoli sheets	
Transport fuel	Fuel use	Delivery of pipe, concrete and other project components to the site	-	-	239	239	Refer to Materials and Transportation sheet	
Waste	Waste	Spoil and waste removal	-	-	52	52	Refer to Waste and Spoil sheet	
Stationary energy	Electricity consumption	Electricity used to power construction plant (lighting, etc) and site offices	-	64	7	71	Refer to the Construction site electricity sheet	
and use changes	Vegetation removal / plantation	Clearance of vegetation because of the project (loss of carbon sink) or planting vegetation	-	-	-	-	Assumed negligible, refer to the report	
Embodied emissions	Materials	Embodied energy of construction materials	-	-	2,752	2,752	Refer to the Materials sheet	
Operation								
Stationary energy	Electricity consumption	Electricity used for pumping, lighting, control and maintenance	-	25,301	3,194	28,495	Refer to the Operation sheet	
Transport fuel	Fuel use	Mobile construction equipment used for maintenance activities	10,575	-	540	11,115	Refer to the Maintenance sheet	
Embodied emissions	Materials	Materials used for maintenance activities	-	-	-	-	Assumed negligible, refer to the report	
Transport fuel	Fuel use	Fuel consumption by trucks delivering the jet fuel	-	-	-	-	Assumed negligible, refer to the report	

[Total emissions of the Project	Scope 1 (Direct)	Scope 2 (Indirect)	Scope 3 (Indirect)	Total (t CO2-e)	
of baseline	Construction	2,499	64	3,178	5,741	000 000
0.1%	Operation	10,575	25,301	3,734	39,610	600,000
0.9%						500,000
0.1%						400.000
0.0%						400,000
0.0%						8 300,000
0.0%						200.000
1.1%						200,000
10.9%						100,000
4.3%						
0.0%						
0.0%						

Daseime							
Emissions category	Emissions source	Activity	Scope 1 (Direct)	Scope 2 (Indirect)	Scope 3 (Indirect)	Total (t CO2-e)	Notes
Reference (Following the expected growth)	Fuel use	Fuel consumption by trucks delivering the jet fuel	248,755	-	12,719	261,474	Refer to the report and the Baseline sheet
Low (20% reduction in expected growth)	Fuel use	Fuel consumption by trucks delivering the jet fuel	100,696	-	5,148	105,844	Refer to the report and the Baseline sheet
High (20% increase in expected growth)	Fuel use	Fuel consumption by trucks delivering the jet fuel	468,279	-	23,943	492,222	Refer to the report and the Baseline sheet
expected growth)	1 001 000	a de concemption by a dello dell'oning a lo jet idei	100,210		20,010		Refer to the report and the Baseline sheet

* Note: numbers may not add up exactly due to rounding.

5.11% 5.11% 5.11% 216,123

for the graph

								Total emissions
2057	2058	2059	2060	2061	2062	2063	2064	2065
43,182	43,453	43,724	43,995	44,266	44,537	44,808	45,079	45,350
90,599	199,058	207,641	216,344	225,161	234,089	243,120	252,250	261,473
98,378	100,134	101,685	103,018	104,115	104,963	105,545	105,844	105,844
19,403	338,263	357,862	378,221	399,362	421,309	444,085	467,714	492,222

Appendix A - Calculation sheets - Baseline emissions

Summary of baseline emissions GPE emission force 112/CO24 243/10 1028/1 SPE emission force 112/CO24 243/10 1028/1 SPE emission force 12/CO24 351/10 1028/1 Max emission 2/CO24 351/10 1028/1 Key assumptions 2001 1028/1	State State <th< th=""></th<>
101 202 203 204 1000 MB Material Material	Fiel and set of the
	1 1

Summary of construction site electricity emissions

GHG emissions (Scope 2) [t CO2-e]	64
GHG emissions (Scope 3) [t CO2-e]	7
Total emissions [t CO2-e]	71

Key assumptions

Common Parameter	Value	Notes
Internal Area (m2)	650	Assumed based on similar projects for offices at different sections of the construction site for about 105 workers
Baseline Energy Intensity (MJ/m2.a)	389	Baseline Energy Consumption and Greenhouse Gas Emissions in Commercial Buildings in Australia, November Australian Governments National Strategy of Energy Efficiency), weighted average intensity of standalone office
Construction duration (weeks)	52	from the construction plan. Assumes 38 per week, Monday to Friday based on consultation with the design tear
Total Electricity Consumption (MJ)	252,850	Calculation
Total Electricity Consumption site office (kWh)	70,236	Calculation
Average Monthly Electricity Consumption site office (kWh)	5,853	Calculation
total electicity per year (kWh)	70,236	Calculation

rs and staff at peak er 2012 (Council of ces. am.

Appendix A - Calculation sheets - Materials and Transportation

Summary of embodied emissions

GHG emissions (Scope 3) [t CO2-e]	2,752
Total emissions [t CO2-e]	2,752
	-

Summary of transportation emissions

GHG emissions (Scope 3) [t CO2-e]	239
Total emissions [t CO2-e]	239

Key assumptions

Embodied carbon used in pipeline construction									Transp	oortation emissions	
Component	Volume (m3)	Mass (tonnes)	Embodied emissions (kgCO2e/unit)	GHG emissions (Secope 3) (tCO2-e)	Notes		number of vehicles	distance (km)	emission factor (kgCO2e/tkm)	GHG emissions (Secope 3) (tCO2-e)	Notes
cocrete used for all components	250	600	442	110	Volume value received from the design team. Concrete global warming impact category from ISC material calculator. Density of concrete assumed 2.4 tonnes/m3 from ISC material calculator.	Truck transport from the nearby supplier	36	2	0.128	6	Transported from Melbourne, 7m3 concrete agitator truck, ISC materials calculator used for emission factors
pipeline steel		700	2935	2,054	Mass value received from the design team. Steel pipe and tube imported global warming impact category from ISC material calculator	Sea transport from Europe	1	25000	0.009	156	Transported from Europe. Emission factor from ISC tool international shippng
other components steel		200	2935	587	Mass value received from the design team. Steel pipe and tube imported global warming impact category from ISC material calculator	Sea transport from Europe	1	25000	0.009	44	Transported from Europe. Emission factor from ISC tool international shippng
		900				transport of steel from Port Melbourne to the construction site	26	20	0.072	33	Transported from Melbourne, articulated truck, ISC materials calculator used for emission factors
			totai	2,752	1				totai	239]

Appendix A - Calculation sheets - Operation

2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065		
0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0	Total (MWh)	share
21462	21462	21462	21462	21462	21462	21462	21462	21462	21462	21462	21462	880	1%
3898094	3898094	3898094	3898094	3898094	3898094	3898094	3898094	3898094	3898094	3898094	3898094	159,822	99%
		3919556				3919556			3919556			160,702	
0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0	0	0		

Appendix A - Calculation sheets - Equipment and Plant

Summary of equipment and plant transportation emissions

GHG emissions (Scope 1) [t CO2-e]	2172.90
GHG emissions (Scope 3) [t CO2-e]	111.10
Total emissions [t CO2-e]	2283.99

Summary of stationary equipment emissions

324.65
16.60
341.25

Key assumptions

Mobile plant and equipment

							fuel						
Plant and equipment name		Number of	d	uration of hous per	operation hours	Fuel Burn Rate	e consu	imp fuel ener	rgy (emissions (Scope 1)	emissions (Scope	e total emissi	ons
	Equivalent plant assumed in the market	Equipment	Fuel used us	se (weeks) week	(hours)	(L/hr)	tion (F	(CJ) (CJ)	((t CO2-e)	3) (t CO2-e)	(t CO2-e)	Notes
Excavator (35T)	CAT 330 - 30t	5	Diesel	22 3	8 836	3	1	130	5002	352		18	370 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Excavator (35T)	CAT 330 - 30t	2	Diesel	4 3	8 152	3	1	9	364	26		1	27 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Excavator (35T)	CAT 330 - 30t	1	Diesel	37 3	8 1406	3	1	44	1682	118		6	125 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Excavator (45T) with Hammer	CAT 349 - 45t	2	Diesel	15 3	8 570	6	1	69	2662	187		10	197 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Grader (14G)	CAT 140M - 17t	1	Diesel	4 3	8 152	2	6	4	151	11		1	11 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
D7 Dozer	CAT D8R	1	Diesel	4 3	8 152	5	4	8	318	22		1	24 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
D7 Dozer	CAT D8R	1	Diesel	36 3	8 1368	5	4	74	2862	202		10	212 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Rock chain trencher	CAT 320 - 21t	1	Diesel	15 3	8 570	2	7	15	583	41		2	43 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Vacuum truck	Water Cart 6 Wheel - 15kl (221kW)	2	Diesel	37 3	8 1406	1	7	49	1889	133		7	140 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
572 side boom	Boom Lift 18m (37kW)	3	Diesel	36 3	8 1368	:	2	10	390	27		1	29 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Prime movers (stringing trucks)	Medium Truck 3.5t≤GVM≤12t (L/hr)	1	Diesel	36 3	8 1368	2	2	31	1183	83		4	88 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Skid truck	Light Commercial ≤ 3.5t (L/hr)	2	Diesel	36 3	8 1368	1	0	27	1031	73		4	76 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Light Truck with Welding Machines	Light Commercial ≤ 3.5t (L/hr)	2	Diesel	36 3	8 1368	1	0	27	1031	73		4	76 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Tack rig	CAT 312 - 13t	1	Diesel	36 3	8 1368	1	5	21	803	57		3	59 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Loader	CAT 966M - 23t	2	Diesel	36 3	8 1368	2	1	57	2186	154		8	162 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
350 padding machine	CAT 312 - 13t	1	Diesel	36 3	8 1368	1	5	21	803	57		3	59 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Trucks to haul in bedding material	Tipper 25t (180)	3	Diesel	36 3	8 1368	2	9	119	4594	323		17	340 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Flocon truck	Medium Truck 3.5t≤GVM≤12t (L/hr)	1	Diesel	36 3	8 1368	2	2	31	1183	83		4	88 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Grader	CAT 140M - 17t	1	Diesel	36 3	8 1368	2	6	35	1362	96		5	101 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Grader (16G)	CAT 140M - 17t	1	Diesel	4 3	8 152	2	6	4	151	11		1	11 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
D7 Dozer - easemen and property rehab	CAT D8R	1	Diesel	4 3	8 152	5	4	8	318	22		1	24 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Tractor - reseeding	Medium Truck 3.5t≤GVM≤12t (L/hr)	1	Diesel	4 3	8 152	2	2	3	131	9		0	10 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Excavator (35T)	CAT 330 - 30t	1	Diesel	4 3	8 152	3	1	5	182	13		1	13 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.

Stationary plant and equipment

Generator (self bunded or within container)	Generator (80kW)	1	Diesel	1	38	38	25.54	1	37.47	2.64	0.13	3 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Generator	Generator (24kW)	1	Diesel	52	38	1976	7.20	14	549.17	38.67	1.98	41 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Fill pump	TF400/40 High Flow Pump	1	Diesel	8	38	304	30	9	352	25	1	26 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
750cfm compressor	Air Compressor 250 CFM (59kW)	1	Diesel	8	38	304	19	6	221	16	1	16 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
1200 cfm compressor for drying	Air Compressor 250 CFM (59kW)	1	Diesel	8	38	304	19	6	221	16	1	16 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Vacuum drying unit	Welder 400A (44kW) Diesel	1	Diesel	8	38	304	4	1	47	3	0	3 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Bending machine	Welder 400A (44kW) Diesel	1	Diesel	36	38	1368	4	5	211	15	1	16 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
Light towers	4 Light (8kW)	11	Diesel									Operation hour 5 days per week construction and 4 hours of lighting per day consultation with electrical team. 4 lights per construction section including cortable LED and flood lighting. Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is
				52	20	1040	2	23	883	62	3	65 taken from similar projects.
Thrust boring activities (rotary auger and generator)		1	Diesel	1	38	38	32	1	47	3	0	3 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
High pressure squeeze pump	TF400/40 High Flow Pump	1	Diesel	8	38	304	30	9	352	25	1	26 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is taken from similar projects.
HDD rig		1	Diesel	36	38	1368	32	44	1690	119	6	125 Plant/equipment name and hours of operation are obtained from the design team. The fuel burn rate is assumed similar to thrust boring.

Summary of waste emissions

GHG emissions (Scope 3) [t CO2-e]	52
Total emissions [t CO2-e]	52

Summary of waste and spoil transportaion emissions

GHG emissions (Scope 1) [t CO2-e]	1
GHG emissions (Scope 3) [t CO2-e]	0
Total emissions [t CO2-e]	1

Key assumptions

	Value Notes
Truck volume (kL)	14.84816 From trucks list, see Emission Factors sheet. Assuming soil density of 922 kg/m3 and 13.69 tonnes truck mass capacity
Truck fuel use (L/100km)	28 From trucks list, see Emission Factors sheet
Round trip distance to landfill (km)	20 Round trip estimated to the three nearest landfills
volume of contam soil (m3)	800 Consultation with the design team
number of trucks	53.9 Calculation
fuel used (kL)	0.3 Calculation
Scope 1 emissions (tCO2e)	0.82 Calculation
Scope 3 emissions (tCO2e)	0.04 Calculation
Total emissions (tCO2e)	0.86 Calculation
	volume Waste mass emissions factor

waste category	(m3)	density (t/m3)	(tonnes)	(tCO2e/t waste)	Scope 3 emissions (tCO2e)	Notes	
							https://www.dcceew.gov.au/sites/default/files/docu
						Waste volume from consultation with the	ments/hazardous-waste-unit-conversion-
						design team. waste volume to mass	factors.pdf
						conversation factors from references in	https://www.sustainabilityexchange.ac.uk/conversi
construction materials	18	1.2	22.0	0.2	4.4	the link	on_factors_for_calculation_of_weight_to_vo
						Waste volume from consultation with the	
						design team. waste volume to mass	
						conversation factors from references in	
waste from equipment and material delive	r 18	0.7	12.8	1.3	16.7	the link	
						Waste volume from consultation with the	
						design team. waste volume to mass	
						conversation factors from NABERS waste	
general waste from site office activities	18	1.05	19.3	1.6	30.8	guidelines	
Total Scope 3 emissions (tCO2e)		-		- -	51.9		-

Appendix A - Calculation sheets - Maintenance

Summary of maintenance ac	tivities emissior	IS	
GHG emissions (Scope 1) [t CO2-e] GHG emissions (Scope 3) [t CO2-e] Total emissions [t CO2-e]	10575 541 11115		times per year number of Utes distance [km] fuel consumption [kL] fuel energy [GJ] emissions factor (Scope 1) [kg C(
Key assumptions			emissions factor (Scope 3) [kg Cl
			emissions (Scope 1) [t CO2-e]
	Value	Notes	emissions (Scope 3) [t CO2-e]
number of vehicles	1	One Ute consultation with the design team	total emissions [t CO2-e]
times per year	260	Daily patrol of the pipeline (5 days per week) based on Viva Energy's input	
Round distance travelled per visit (km)	50	from Viva Energy office in Melbourne CBD	
Ute consumption (L/100km)	7.3	Claimed fuel economy for 2015 Toyota Hilux 4x4 twin cab ute	

	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065
fan en 1997	200	200	200	200	200	200	200	200	200	000	200	000	000	200	200	000	200	200	200	200	200	200	200	200	200	200	000	000	000	200	200	000	000	2000	000	000	000	000	200	200	000
unies per year	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
number of Utes	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	/ 1
distance [km]	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
fuel consumption [kL]	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90	94.90
fuel energy [GJ]	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14 3	8663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14	3663.14
emissions factor (Scope 1) [kg CO2-e/GJ]	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4	70.4
emissions factor (Scope 3) [kg CO2-e/GJ]	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
emissions (Scope 1) [t CO2-e]	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92	257.92
emissions (Scope 3) [t CO2-e]	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19	13.19
total emissions [t CO2-e]	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11	271.11

Appendix A - Calculation sheets - Fuel Burn Rates

NameNumber of the sector of the						
Har between series and seri	Part 2. Equipment Fuel Euror Rates Power (MV) Power (MV)<					
ConditionalPartial probatingPartial probatingPartial probatingPartial probatingPartial probatingPartial probabilityStandard MarkRescalational probatingRescalational probatingRescalational probatingRescalational probatingRescalational probatingStandard MarkRescalational probatingRescalational pro	Land CategoryPater kannePower (NU)PMandel Work PlattonBoort Land (SNW)575Ad SherSold Short CAT 2023 SIGN565(NV)Compacting PlateLight Compacting Plate SDSM (STW)75conspacting PlateLight Compacting Plate SDSM (STW)75collerCAT CSSF : 121305collerCAT CSSF : 121305consets PampConce Famp with 30m Boom (500W)305consets PampConce S00 (400W)30301caraeCane 250 (450W)4051caraeCane 250 (450W)4011caraeCane 350 (450W)4011caraeCAT 2402 - 38333caraeCAT 2402 - 38333caraeCAT 300 - 31333caraeCAT 300 - 31333caraeCAT 340 - 31333caraeCAT 2402 - 38333caraeCAT 2404 - 31333caraeCAT 340 - 31 <th></th> <th></th> <th></th> <th></th> <th></th>					
Backer (1) Back	levaled Work Platom looper Lange looper angehang Plate belay Compacing Plate Solicy Plate Solicy Plate Solicy Plate Solicy Plate Solicy Plate Solicy Plate Solicy Plate Solicy Plate Solicy Plate Solicy Plate Solicy	uel Type	Fuel Burn Rate	Fuel Burn	Source	Notes
and and a set of a loss of a	Add SteerShid Steer CAT 2620 3.8 (SRW) Heavy Compacting Plate 500kg (W)9ompacting PlateLight Compacting Plate 500kg (W)4ompacting PlateLight Compacting Plate 500kg (W)4ollerCAT C553 - 125ollerCAT C554 - 7 (73W)130ollerCAT C554 - 7 (73W)75ollerCAT C554 - 7 (73W)75ollerCAT C554 - 7 (73W)75ollerCAT C554 - 7 (73W)75ollerCAT C554 - 7 (73W)300oncetel PumpConc. Fump with Son Boom (SOW)300oncetel PumpConc. Fump with Son Boom (SOW)300oncetel PumpConc. Fump with Son Boom (SOW)300oncetel PumpConc. Fump with Son Boom (SOW)300raneCrane 500 (400kW)400raneCrane 200 (400kW)400raneCrane 200 (400kW)400raneCrane 200 (400kW)50raneCrane 200 (400kW)50raneCrane 200 (400kW)60raneCrane 200 (400kW)75raneCrane 200 (400kW)75<	Diesel	2.5	L/hr	https://auslift.com.au/collections/4wd-diesel-knuckie-boom lifts_fnc.htre/modurts/in_2016_diesel-knuckie-boom_lift	JLG Articulating Boom Lift 18.47m
Image: constraint of the start of the st	(AVX) (AVX) (AVX) Lajki Compacting Pathe BRig (4XV) 4 oler CAT CSS5 - 12	Diesel Diesel	12.1 1.9	L/hr L/hr	Caterpilar Performance Handbook 49 (2019) https://www.wackerneuson.com/en/au/products/compacti no/vihratron	CAT 262D
Abi way and a second secon	Boller - 380kg Ped DuplexSullar - 300kg Ped DuplexSelerCAT C654 - 74 (21304W)130CAT C654 - 74 (21304W)27CAT C654 - 74 (75W)75CAT C654 - 74 (75W)75SelerCAT C654 - 74 (75W)75CAT C654 - 74 (75W)75SelerCAT C654 - 74 (75W)75CAT C654 - 74 (75W)75SelerCAT C654 - 76 (75W)75SelerCAT C654 - 76 (75W)75SelerCAT C654 - 76 (75W)76SelerCAT C654 - 76 (75W)200aneCrane 501 (400kW)400aneCrane 501 (400kW)400aneCrane 501 (400kW)400aneCrane 501 (400kW)400aneCAT 760 - 7550aneCAT 760 - 7550catababCAT 100 - 7150catababCAT 100 - 7175catababCAT 100 - 7175catababCAT 100 - 71100catababCAT 100 - 71100catabab<	Diesel	1.4	L/hr	plates/model/dpu6555/type/TechnicalData/ https://www.hondashop.com.au/product/dowerin-show- special/stationary-engine-gr160/	Uses the same engine in the Hoppt Compactor http://www.hoppt.com.aubox-plate-compactor
distControl	olar olar control CAT CSS- 121I I SOUT 	Diesel	1.7	L/hr	Weber MT (2021) (https://www.webernt.com/DE/eng/tolkrs/duplex-roller- drh-600) Kohter Engines Workshop Manual (https://tervice.ombardinf.ikdocuments/ProdCateg/1405/ MD_Rav_00_KD_225_315_350_400_440_GB.pdf)	DVH 400 Roller uses 5 SHP Kohler Engine. Kohle KD350 has similar ratings with 0.260 kglkWh fuel consumption. LPH = ((Fuel Consumption)x(Power Rating)x1009 Load/ISpectfic Weight of Diesel (0.85)
	CAT 6224 - R (2004) 27 Deter CAT 6244 - R (2004) 302 Deter CAT 6244 - R (2004) 302 Deter CAT 6244 - R (2004) 302 concette Pump Conc. Fumy with MB boots (3004) 302 concette Pump Conc. Fumy with MB boots (3004) 302 cane Crane 250 (250 (W) 203 cane Crane 501 (400 (W) 400 cane Crane 501 (400 (W) 400 cane Crane 501 (450 (W) 400 cane Crane 501 (450 (W) 450 cane Crane 501 (450 (W) 450 cane Crane 501 (450 (W) 450 cane Crane 501 (450 (W) 505 cane Crane 501 (450 (W) 50 cane Crane 501 (450	Diesel	22.7	L/hr	Caterpillar Performance Handbook 49 (2019)	Soil Compactor CS74
diam and the set of the	oler OAT 584 - 7 (754V) 75 OAT 585 - 581 (502V) 300 OAT 585 - 581 (502V) 300 anorease Panp Cone: Fung with Sen Boom (300VN) 300 anorease Panp Cone: Fung with Sen Boom (300VN) 300 arane Cone Set (250 W) 200 arane Cone Set (450 W) 200 arane Cone Set	Diesel	26.5	L/hr L/hr	Caterpilar Performance Handbook 49 (2019) Caterpilar Performance Handbook 49 (2019)	Soli Compactor Core
Bonne Pure Cons. Pure view Size Size CPU (SMN) Size Base 11.4 Lin Base with any sequence size of the se	concese PumpConce. Pump with Sem Boom (3004W)300ompressorAr Compressor 200 CFM (58KW)99rameCrame 251 (200KW)200rameCrame 501 (200KW)200rameCrame 500 (400KW)400rameCrame 500 (400KW)400rameCrame 200 (400KW)400rameCrame 200 (400KW)400rameCrame 200 (400KW)420rameCrame 200 (400KW)400rameCrame 200 (400KW)400rameCrame 200 (400KW)80crameCrame 200 (400KW)80crameCrame 200 (400KW)80ensemberCrame 200 (200KW)80ensemberCrame 200 (200KW)80ensemberCrame 200 (200KW)80ensemberCrame 200KW100ensemberCrame 200KW100ramePaper 201(100KW)110ramePaper 201(100KW)110ramePaper 201(100KW)100ramePaper 201(100KW)100ramePaper 201(100KW)100rame <td< td=""><td>Diesel</td><td>15.7</td><td>L/hr</td><td>Caterpillar Performance Handbook 49 (2019) Caterpillar Performance Handbook 49 (2019)</td><td></td></td<>	Diesel	15.7	L/hr	Caterpillar Performance Handbook 49 (2019) Caterpillar Performance Handbook 49 (2019)	
Non-particle bit of the part of the p	and pressorAF Compressor 280 CFM (SBW)59raneCrane 251 (200W)200raneCrane 501 (250W)200raneCrane 501 (400KW)400raneCrane 2001 (400KW)400raneCrane 2001 (400KW)400raneCrane 2001 (400KW)400raneCrane 2501 (405KW)450raneCrane 3501 (405KW)450raneCrane 3501 (405KW)505raneCrane 3501 (24KW)75raneCrane 3501 (24KW)75raneCrane 3501 (24KW)75raneCrane 3501 (24KW)75raneCrane 3501 (24KW)100raneCrane 3501 (24KW)100raneCrane 3501 (24KW)100raneCrane 3501 (24KW)100raneCrane 3501 (24KW)100raneTabed HAB Truck 201 (110KW)110raneCrane 3501 (24KW)100raneCrane 3500 (24KW)100rane	Diesel	81.4	L/hr	https://www.wpowerproducts.com/power-generation- resources/desel-fuel-consumption-chart/	Assume equivalent to full load fuel consumption for 300 kW diesel engine (generator) from linked sou 21.5 gal = 81.4 L.
nmOme 20 (2007)20Peril41UrMaching space for fiber of the large space spac	rane Carl 250 (200W) 200 rane Carl 250 (400W)	Diesel	19	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/biogidiesel-generator-fuel- consumption-chart-in-litres.html)	Assume equivalent fuel efficiency as 60 kW diese generator
nameDesk D(DAW)20Desk41UnitMathem symposition of the base of the ba	rane Cane 300 (250W) 200	Diesel	64	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/blogitilesel-generator-fuel- consumption-chart-in-litres.html)	Conversion of KW to fuel burn rate using average generator efficiencies
mate Dires H0 (4000) 40 Desk 12 Lin Mate has, "particular diversity of efficance," Desk H0 (4000) Add H0 has have and H0 has have have and H0 has have and H0 has have and H0 has have	rane Crane 100 (400.W) 400 rane Crane 250 (400.W) 400 rane Crane 450 (500.W) 450 rane Crane 450 (500.W) 505 rane Crane 450 (500.W) 505 rane CAT 508 505 consert CAT 507 505 consert CAT 507 505 consert CAT 507 505 consert CAT 507 505 consert CAT 507 505 consert CAT 507 505 consert CAT 507 505 consert Fabed HAB Truck 24 (115	Diesel	64	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/blogidiesel-generator-fuel- consumption-chart-in-litres.html)	Conversion of kW to fuel burn rate using average generator efficiencies
rate Circe 301 (400.W) 40 Desk 12 Lbr. as how	Tame Crane 200 (400,W) 400 rane Crane 250 (425,W) 425 rane Crane 350 (450,W) 450 rane Crane 350 (450,W) 55 rane Crane 450 (505,W) 55 rane Crane 450 (505,W) 55 rane CAT 7402 - 38 55 rane CAT 7402 - 38 55 rane CAT 7402 - 38 55 rane CAT 740 - 38 55 rane CAT 340 - 15 55 raneber CAT 340 - 55 55 remember CAT 340 - 55 55 remember CAT 140M - 171 56 rander CAT 140M - 171 57 rane Tapper 152 (140) 140 </td <td>Diesel</td> <td>128</td> <td>L/hr</td> <td>Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/biogidiesel-generator-fuel- consumption-chart-in-litres.html)</td> <td>Conversion of kW to fuel burn rate using average generator efficiencies</td>	Diesel	128	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/biogidiesel-generator-fuel- consumption-chart-in-litres.html)	Conversion of kW to fuel burn rate using average generator efficiencies
conse Conse 250 (42307) 451 Deted 131 Lb pack has has been bedreed on up of the barm and any and the barm and the barman and the barm and the barm and the barm and the bar	tane Crane 250 (425W) 425 crane Crane 350 (450W) 450 crane Crane 350 (450W) 505 crane Crane 350 (450W) 70 crane Crane 350W (700W) 70 crane Crane 750W	Diesel	128	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/biogidiesel-generator-fuel- consumption-chart-in-litres.html)	Conversion of kW to fuel burn rate using average generator efficiencies
name Cance 350 (450.V1) 450 Dead 141 L/r mass manual constraint of straints and any straints any straints and any straints and any straints	rane Crane 350 (450W) 450 crane Crane 450 (505W) 505 crane 450 (Crane 450 (5	Diesel	136	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/biogidiesel-generator-fuel- consumption-chart-in-litres.html)	Conversion of kW to fuel burn rate using average generator efficiencies
name Cone 450 (550/H) 550 Died 11 L/H mask mark particular distance in direct in direct in distance in direct i	rame Crame 450 (505W) 505 rame 450 (505W) 505 rdicadated Dump Truck CAT 740C2 - 381 reservator CAT 2067 CAT 206	Diesel	144	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/biogidiesel-generator-fuel- consumption-chart-in-litres.html)	Conversion of KW to fuel burn rate using average generator efficiencies
Control CAT PAG2 - 58 Deset 6.2 U.V. Galar Multimetance Multimetance Sector CAT PGC - 58 Deset 6.2 U.V. Galar Multimetance Multimetan	And Laked Dump Truck CAT 740C2 - 381 State CAT 740C2 - 381 State CAT 303 - 221 StateWater Generator (24W) 80 einerator Generator (24W) 24 State CAT 196M - 221 8 state CAT 196M - 221 120 state CAT 196M - 221 120 state CAT 196M - 221 120 ump Tpoper 50 (750/W1) 140 state Tpoper 52 (150) 140 state Tpoper 52 (150) 180 state Flabbed HAB Truck 20 (116W) 110 state Flabbed HAB Truck 20 (116W) 121 state Welder 400A	Diesel	161	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/biogidiesel-generator-fuel- onsumtron-chart-au-bires.html)	Conversion of KW to fuel burn rate using average generator efficiencies
Dath DBR Deed 6.4.2 1W Deed Teles	coart CAT DBR searebar CAT 332 - 131 searebar CAT 349 - 435 searebar CAT 494 - 451 searebar CAT 400 - 171 coder CAT 1964 - 131 order Tipper 151 (140) paper Tipper 151 (140) paper Tipper 151 (140) paper Tipper 251 (150) paper Flastbed HAB Truck 24 (115KW) nuck Flastbed HAB Truck 24 (115KW) inor Plant Muchar (15KW)	Diesel	45.2	L/hr	Caterpillar Performance Handbook 49 (2019)	
Catalog CAT 193 : 191 Deside 1.5.3 Upw Compto Performance Induces of D910 Accurng 1 = 62 O 2008 (13 0.0 PC) Search CAT 300 - 211 Deside 2.5.4 Upw Compto Performance Induces of D910 Accurng 1 = 62 O 2008 (13 0.0 PC) Search CAT 300 - 211 Deside 2.5.4 UPW Compto Performance Induces of D910 Accurng 1 = 62 O 2008 (12 0.0 PC) Search CAT 300 - 211 Deside 2.5.4 UPW Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Search CAT 300 - 211 Deside 2.5.4 UPW Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Search CAT 300 - 211 Deside 2.5.6 UPW Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 2008 (12 0.0 PC) Accurng 1 = 62 O 200 (12 0.0 PC)	canator CAT 39 - 13 construct CAT 30 - 13 construct CAT 30 - 13 construct CAT 30 - 53 construct CAT 30 - 53 construct CAT 30 - 53 construct CAT 30 - 53 construct CAT 30 - 54 construct CAT 30 - 54 c	Diesel	54.2	l /hr	Caterpillar Performance Handbook 49 (2019)	Assume similar to CAT D8T
CAT 300 - 11 (Upper (Catiglia Pricanase Neticals of [710] Autors (151 C 30021 300) Consider (C 330 - 36) Desite 2.5 0 Upper (Complex Pricanase Neticals of [710] Autors (151 C 30021 300) Consider (C 330 - 36) B0 Desite 2.5 0 Upper (Complex Pricanase Neticals of [710] Autors (151 C 30021 300) Consider (C 404V) 24 Desite 2.5 0 Upper (Pricanase Neticals of [710] House Neticals of [7	cavator CAT 320 - 211 cavator CAT 320 - 211 cavator CAT 330 - 50 cavator CAT 340 - 50 cavator CAT 450 - 57 cavator CAT 450 - 77 cavator CAT 450 - 77 cadar CAT 450 - 71 cadar Cadar cadar Cadar cadar Flatbed HAB Tuck 24 (115W) cadar Water Carl 6 Wheel - 194 (22W) cadar Muder 400A (44W)	Diesel	15.2	L/hr	Caterpilar Performance Handbook 49 (2019) Caterpilar Performance Handbook 49 (2019)	Assuming it is HEX D SERIES 312 (STD) Assuming it is HEX D SERIES 320D (STD)
Designed Output of All Side - Side - Side - Side - Dissile Other Object - Side - S	CAT 393 - 43; enerator CAT 393 - 43; enerator cenerator (80WV) 80 anerator Generator (80WV) 80 anerator Generator (24WV) 24 adder CAT 950N - 72; CAT 950N - 72; CAT 950N - 72;	Diesel	26.5	L/hr	Caterpillar Performance Handbook 49 (2019)	Assuming it is HEX D SERIES 320D (STD)
Demote Defended (DAV) B0 Desk 2.5 s Line Mark East, regis these demotes and any more partial any more partial and any more partial any more partex any more partial any more partial any more parte	Generator (BOKW) B0 anterator Generator (24KW) 24 anterator CAT 190M - 171.	Diesel	60.5	L/hr	Caterpilar Performance Handbook 49 (2019)	349E HEX E
Benefator Generator (24W) 24 Desil 7.2 Linr Alles Type To Design for the manage fragment of the filteness fragment of the filte	enerator (24W) 24 ader CAT 140M - 171 cAT 160K - 231 ader CAT 140K - 171 cAT 160K - 231 ader CAT 140K - 171 cAT 160K - 231 ader CAT 140K - 231 ader CAT 140 ader CAT 140K - 231 ader CAT 140K - 231 ader CAT ader	Diesel	25.5	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/biogidiesel-generator-fuel- consumption-chart-in-litres.html)	Fuel burn rate estimated using average generator efficiency based on power rating.
CAT 1404 - 171 Desci 2.5.8 Unit Compare Future structures in technical (2019) MMR object Art 1407 1808 - 172. Diedad 17.0 Unit Compare Futures intendical (2019) Aname familiary intendical (2019) Aname f	Exader CAT 1004 - 17; coder CAT 9604 - 231; ebbandler Main MT135 - 94 (73K/W) 75 ebbandler Main MT135 - 94 (73K/W) 75 ebbandler Main MT135 - 94 (73K/W) 75 ump TF400140 High Plow Pump 17 ump Pump with 6" Suction Pipe (17KW) 17 ipper Tpper 15t (140) 140 ipper Tpper 25t (190) 180 inck Flabed HAB Truck 20t (116.W) 110 ruck Flabed HAB Truck 20t (116.W) 115 ruck Flabed HAB Truck 20t (116.W) 115 ruck Flabed HAB Truck 20t (116.W) 121 ruck Flabed HAB Truck 20t (116.W) 121 ruck Flabed HAB Truck 20t (116.W) 121 ruck Weder 400A (44.W) Diesel 44 floor Plant Pressure Washer 3300PSI (5KW) 5 runp Bkucher (15KW) 16 16 runp Flant Grout Pump 10 Bag (5KW) 5 16 runp BKW Pump 8	Diesel	7.2	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/blogidiesel-generator-fuel- consumption-chart-in-litres.html)	
Outside Outside Outside Outside Outside Outside Outside Advance National & 10000 Advance National & 100000 Advance Natvancon National & 100000	addef DA1 9604 - 231 aptimized A1 USA1 231 (2004) aptimized A1 USA1 (2003) aptimized A1 USA1 (2003) aptimized A1 USA1 (2003) aptimized A1 USA1 (2003) aptimized A1 USA1 (2004) aptimized TF 400404 High Flow Pump amp Pump with 6" Suction Pipe (17kW) 17 apper Tipper 152 (140) 140 poper Tipper 251 (150) 160 poper Tipper 251 (150) 110 radia Plated HAB Truck 241 (115W) 115 radia Wader Carl 6 Wheel - 15kl (221W) 221 radia Plated HAB Truck 241 (115W) 15 radia Wader Carl 6 Wheel - 15kl (221W) 221 radia Wader 400A (44WY) Dissel 44 incor Plant Mucher (16WY) 16 incor Plant Mucher (16WY) 16 incor Plant Concrete Wanter 3300PSI (5WY) 5 urup BWW Pump 8 35 urup BWW	Diesel	25.8	L/hr	Caterpillar Performance Handbook 49 (2019)	140M3
phthing L Lytr Besultant Location Light Tead 2000 Light Disk Page 2019 Section Light Tead 2000 Light Disk Page 2019 Section Light Tead 2000 Light Disk Page 2019 Section Light Tead 2000 Light Tea	philing 4 Lipit (8W) 8 amp 17400/40 High Flow Pump 17 amp Tipper 155 (140) 140 opper Topper 155 (140) 140 opper Topper 155 (140) 180 opper Topper 251 (190) 180 outs Flabbed HIAB Truck 20 (110KW) 110 outs Flabbed HIAB Truck 20 (110KW) 121 outs Flabbed HIAB Truck 20 (200W) 5 outs Moder 400A (44KW) Dasel 44 on Partat Moder 400A (44KW) Dasel 4 on Partat Stump Group CagW) 5 on Partat Goutel Wanter 300PSI (6KW) 5 on Partat Steed Steegor 5 ottak Steed Steegor 5 ottak Steed Steegor 5 ottak Light Commercial 5 3.51 (Lhm) 1	Diesel	20.7	L/hr L/hr	Caterpilar Performance Handbook 49 (2019) Caterpilar Performance Handbook 49 (2019)	Assumed similar to TH350B
Imp TF40040 High Fox Pump Diesel 30.0 Life Complex Public Models 49 (21) That Pump (21) with use a CC 10.3 ACC 100 (21) (21) (21) (21) (21) (21) (21) (21)	mp TF40040 Hgb Flow Pump amp Pump with 6" Suction Ppe (17/W) 17 pper Tipper 15 (140) 140 pper Tipper 25 (180) 180 puck Flabbed HAB Truck 20 (110KW) 110 uck Flabbed HAB Truck 20 (110KW) 110 uck Flabbed HAB Truck 20 (110KW) 221 uck Flabbed HAB Truck 20 (110KW) 221 uck Flabbed HAB Truck 20 (110KW) 221 uck Wader Cart 6 Wheel - 194 (221KW) 221 uck Wader Cart 6 Wheel - 194 (221KW) 221 uck Wedder 400A (44KW) Diesel 44 inor Plant Mucher (15KW) 5 inor Plant Stump Grinder (20KW) 5 inor Plant Grout Pump 10 Bag (5KW) 5 inor Plant Concrete Vibrator 3.5 uck Medium Truck 3.55(CVMS121 (Lhr) uck uck Medium Truck 3.55(CVMS122 (L/hr) uck uck Heavy Truck 125GCVMS221 (L/m) uck uck Heavy Truck 125GCVMS122 (L/m) uck <td>Diesel</td> <td>2.0</td> <td>L/hr</td> <td>Generator Source - Magnum Light Tower 3060 (https://www.generatorsource.com/specsheets/3000K.pdf</td> <td></td>	Diesel	2.0	L/hr	Generator Source - Magnum Light Tower 3060 (https://www.generatorsource.com/specsheets/3000K.pdf	
pump Pump with 6* Suction Pipe (17kW) 17 Diesel 4.8 L/hr Athen service from Construction for Suction Construction Successful Constructin Successful Constructin Successful Construction Succ	amp Pump with 6" Suction Pipe (17kW) 17 piper Tipper 15 (140) 140 piper Tipper 25 (180) 180 piper Tipper 25 (180) 180 piper Tipper 25 (180) 180 piper Tipper 25 (180) 110 piper Tipper 25 (180) 110 piper Tipper 25 (180) 110 radia Flabbed HAB Truck 20 (110kW) 115 radia Walter Cart 6 Wheel - 15kl (221kW) 221 radia Weider 400A (44kW) Desel 44 inor Plant Pressure Washer 3300PS (5KW) 5 inor Plant Stumo Grinder (20KV) 16 inor Plant Gout Pump 10 Bag (5KW) 5 inor Plant Concrete Vibrator 3.5 ump BKW Pump 8 weeper Street Sweeper 1 pit Vehicles Lipit Commercial \$ 3.5 (Lhm) - undk Heavy Truck 125GVM-525 (L/hw) - undk Heavy Truck 125GVM-525 (L/m) -	Diesel	30.0	L/hr	, Caterpillar Performance Handbook 49 (2019)	Trufio Pumps (2019) which uses CAT C9.3 ACER Engine (https://trufiopumps.com.au/brochure/2019_TF_D/ SHEET_WEB_TF400_40.pdf)
pppr Tipper 18, (140) 140 Diesel 23.2 L/hr Conspire Methamous Networks 48 (2011) Extension Is Not 07.218.70/21 builty bears and 2014 pppr Tipper 28, (180) 180 Diesel 33.1 L/hr Conspire Methamous Networks 48 (2011) Bit and 7.218.70/21 builty bears and 27.218.70/21 builty bears an	ipper Tipper 15 (140) 140 ipper Tipper 25 (180) 180 ipper 11 fabere HIAB Truck 20 (110KW) 110 intack Flabere HIAB Truck 20 (110KW) 110 intack Flabere HIAB Truck 20 (110KW) 221 valer Cart Waler Cart 6 Wheel - 154 (221KW) 221 valer Waler Cart 6 Wheel - 154 (221KW) 221 valer Waler Cart 6 Wheel - 154 (221KW) 221 valer Waler Cart 6 Wheel - 154 (221KW) 221 valer Waler Cart 6 Wheel - 154 (221KW) 221 valer Waler Cart 6 Wheel - 154 (221KW) 221 valer Mucher (15KW) 16 valer Mucher (25KW) 5 valer Grout Pump 10 Bag (5KW) 5 valer Concrete Wantor 3.5 valer Explit Commercial s 3.5 (1/Lm) valer valer Medium Truck 3.55(VMs12t (L/m) valer valer Light Commercial s 3.5 (L/Lm) valer valer Light Commercial s 3.5 (L/Lm) valer <t< td=""><td>Diesel</td><td>4.8</td><td>L/hr</td><td>Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/blogidiesel-generator-fuel- consumption-chart-in-litres.html)</td><td>Assume similar fuel consumption to a 16 kW generator at full load</td></t<>	Diesel	4.8	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/blogidiesel-generator-fuel- consumption-chart-in-litres.html)	Assume similar fuel consumption to a 16 kW generator at full load
Part Type 23 (190) 100 Deted 20.0 L/L Complex 7 (190) ender trans a statistic processing 20.0000 ender trans a statistic processing 20.00000 ender trans a statistic processing 20.000000 ender trans a statistic processing 20.00000000000000000000000000000000000	Typer 28 (19) 16 paper Typer 28 (14) 10 priod Flabbed HAB Truck 20 (110kW) 10 rotot Flabbed HAB Truck 20 (110kW) 10 value Flabbed HAB Truck 20 (110kW) 115 value Flabbed HAB Truck 20 (110kW) 221 value Flabbed HAB Truck 20 (110kW) 221 value Walder 400A (44kW) Dissel 44 inor Plant Pressure Washer 3300PBI (5kW) 5 inor Plant Stimo Grinder (20kW) 16 inor Plant Bounder (20kW) 20 inor Plant Concrete Vibrator 3.5 unop BKW Pump 8 weeper Street Sweeper 1 unok Medium Truck 3.55GVMS121 (Lhr) 1 unok Heavy Truck 125GVM525 (L/hr) 1 unok Medium Truck 3.55GVM5121 (Lhrn) 1 unok Medium Truck 3.55GVM5121 (Lhrn) 1 unok Heavy Truck 125GVM5251 (L/km) 1 unok Heavy Truck 125GVM5212 (Lhrn) 1 <td>Diesel</td> <td>23.2</td> <td>l /hr</td> <td>Caterpillar Performance Handbook 49 (2019)</td> <td>Estimated to be 80% of CAT 24t 730C2 truck (no</td>	Diesel	23.2	l /hr	Caterpillar Performance Handbook 49 (2019)	Estimated to be 80% of CAT 24t 730C2 truck (no
Pathed HAB Truck 20t (110xW) 10 Diesel 55.1 L/H All bask Truck 20t (110xW) Text the mass energy	Nucle Fieldbed HAB Truck 20 (110KW) 110 nuck Fieldbed HAB Truck 24 (115KW) 115 nuck Fieldbed HAB Truck 24 (115KW) 115 /rater Cart Water Cart 6 Wheel - 154 (221W) 221 /rater Cart Water Cart 6 Wheel - 154 (221W) 221 /rater Cart Welder 4000 (44W) Diesel 44 inor Plant Pressure Water 300581 (KW) 5 inor Plant Mulcher (16KW) 16 inor Plant Stump Grinder (20KW) 20 inor Plant Grout Europ 10 Bag (SW) 5 inor Plant Concrete Vibrator 3.5 ump BXW Pump 8 wearer Stead Dieseser Light Commercial \$3.51 (Lhr)	Diesel	20.0	L/br	Caternilar Performance Hardbook 49 (2019)	smaller trucks available) Based on CAT 24t 730C2 truck
uck Flabbel HAB Truck 24 (115kW) 115 Diesel 36.7 L/Irr Alle Singer Address Town Town Town Town Town Town Town Town	uok Flabed HAB Truck 24((1150/W) 115 tater Cart Water Cart 6 Wheel - 154 (221W) 221 teider Weider 400A (440W) Diesel 44 teider Weider 400A (440W) Diesel 44 tion Plant Pressure Washer 3300PSI (56W) 5 inor Plant Mulcher (156W) 16 inor Plant Stump Grinder (26W) 20 inor Plant Grout Pump 10 Bag (56W) 5 inor Plant Concrete Vibrator 3.5 inor Plant Concrete Vibrator 3.5 inor Plant Light Commercial s 3.51 (Lhr) - uok Medium Truck 3.55CVMs121 (Lhr) - uok Heavy Truck 125SCVMs221 (Lhr) - uok Medium Truck 3.55CVMs121 (Lhr) -	Diesel	35.1	L/hr	Abie Sales, Typical Dised Generator 4 (2017) (https://www.abiesales.com.au/biogidiesel-generator-fuel- consumption-chart-in-litres.html)	Fuel burn of the role in the second state of the second se
Atter Cart Water Cart 6 Wheel - 154 (2211W) 221 Diesel 17.4 L/hr Expose for two specifications of the physical scale and the physicand scale and the physica scale and the physical scale and the ph	Jater Cart Water Cart 6 Wheel - 194 (221WV) 221 Jedder Welder 400A (44W) Diesel 44 Lince Plant Pressure Washer 3300PSI (5WV) 5 Lince Plant Mulcher (15KW) 16 Lince Plant Stump Grinder (20KW) 20 Lince Plant Stump Grinder (20KW) 20 Lince Plant Grout Pump 10 Bag (5W) 5 Lince Plant Concrete Vibrator 3.5 Lingt Commercial \$ 3.51 (LIN)	Diesel	36.7	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/blogidiesel-generator-fuel- consumption-chart-in-litres.html)	Fuel burn rate estimated using average generator efficiency based on power rating.
defer Weider (3000, (MAX) Disea 44 Disel 4.0 Line Bits manual and state	eleder Welder 400A (44.W) Diesel 44 inor Plant Pressure Washer 3300PS (58.W) 5 inor Plant Mucher (16XW) 10 inor Plant Stump Grinder (2GW1) 20 inor Plant Stump Grinder (2GW1) 20 inor Plant Stump Grinder (2GW1) 3.5 inor Plant Concrete Vibrator 3.5 amp &W Pump 8 ateger Street Sweeger 5.5 (L/hr) uck Medium Truck 3.55GVM512 (L/hr) - uck Heavy Truck 12tsGVM525 (L/hr) - uck Light Commercial ≤ 3.51 (L/km) - uck Light Commercial ≤ 3.51 (L/km) - uck Heavy Truck 12tsGVM525 (L/km) - uck Be-double - - uck StotSVM512t (L/km) - uck Be-double -	Diesel	17.4	L/hr	Ezyquip hire water truck specifications (https://www.ezyquip.com.au/product/tvz-260-300-water- truck/)	Medium fuel burn rate is average of medium application.
Inco Plant Pressure Washer 3300PSI (ISW) 5 Diesel 6.7 L/hr Improvement and an pdf	Innor Plant Pressue Washer 3300PSI (SW) 5 Innor Plant Mulcher (ISKV) 16 Innor Plant Stump Ginder (26W) 20 Innor Plant Grout Pump 10 Bag (SW) 5 Innor Plant Concrete Vibrator 3.5 amp 8W Pump 8 exerpt Street Sweeper 4 unk Medium Truck 3 SSGVM612t (Lhr) 4 unk Heavy Truck 12SGVM52t (Lhr) 4 unk Heavy Truck 12SGVM52t (Lhr) 4 unk Medium Truck 3 SSGVM612t (Lhr) 4 unk Heavy Truck 12SGVM52t (Lhrn) 4 unk Heavy Truck 12SGVM52t (Lhrn) 4 unk Heavy Truck 12SGVM52t (Lhrn) 5 unk B-double 5 5 unk Soil Nail Machine 5 5	Diesel	4.0	L/hr	https://www.scribd.com/doc/44059673/Standard-Fuel- Consumption-Model-2	Based on Miller 401DX 400A Welder
Nuclear (NeW) 16 Diesel 0.0 L/hr Bester Association (NeW) 100 Diegenitation Inor Plant Strong Pinnder (XXW) 20 Diesel 12.0 L/hr Newer ASDOL Conserve 10/18 (NeW) Inor Plant Strong Pinnder (XXW) 20 Diesel 12.0 L/hr Newer ASDOL Conserve 10/18 (NeW) Conserver 10/18 (Ne	Inice Plant Mulcher (15KW) 16 Inice Plant Stump Grinder (26KW) 20 Inice Plant Good Hump 10 Bag (6KW) 20 Inice Plant Concrete Vibrator 3.5 Inice Plant Concrete Vibrator 3.5 Inice Plant Stimet Generger 8 Inice Vibrator Stimet Generger 1 Inice Vibrator Heavy Truck 12:SGVMS121 (Lhr) - uck Heavy Truck 12:SGVMS122 (Lhr) - uck Light Commercial 5.3.51 (Lhr) - uck Heavy Truck 12:SGVMS122 (Lhr) - uck Medium Truck 3.5SGVMS122 (Lhr) - uck Heavy Truck 12:SGVMS122 (Lhr) - uck B-double - uck Sol Nati Machine -	Diesel	5.7	L/hr	https://www.kewparts.com/uploads/3/4/0/2/34021509/kew catalog.orff	Similar to Neptune 7-66 2750PSI Washer at 1.5 nality. Enviyalent to 5.7 Lifty
Nump Dinker (20kW) 20 Deset 12.0 L/hr Nume Rec. Typical Data (Data) Add Data	Ince Plant Stump Grinder (20KW) 20 Concelle Vibrator 3.5 mor Plant Concelle Vibrator 3.5 mp 8kW Pump 8 seeper Street Sweeper 4 thy Velicles Light Commercial ≤ 3.5t (Uhr) uck Medium Truck 3.5tsGVMs12t (Uhr) ght Velicles Light Commercial ≤ 3.5t (Uhr) ty truck 2.5tsGVMs12t (Uhr) uck Medium Truck 3.5tsGVMs12t (Uhr) uck Medium Truck 3.5tsGVMs12t (Uhr) uck Medium Truck 3.5tsGVMs12t (Uhr) uck Medium Truck 3.5tsGVMs12t (Uhr) uck Beavy Truck 12tsGVMs12t (Uhr)	Diesel	3.0	L/hr	https://www.tpchipper.com/chippers/tp-175-mobile-stage- v/	17kW Chipper/Mulcher
Inter Plant Grout Plany 10 Bag (SW) 5 Diesel 2 L/tr Atta Babs And Date (Date Charge Transform Flant Charge Tran	Inor Plant Grout Pump 10 Bag (SkW) 5 Inor Plant Concrete Vibrator 3.5 Inor Plant Concrete Vibrator Vibrator 3.5 Inor Plant Concrete	Diesel	12.0	L/hr	Vermeer BC900XL	BC900XL Wood Chipper / Brush Chipper Vermi Australia Tree Care
Inter Plant Concrete Vibrator 3.5 Diesel 1.1 L/hr Rotes - Concrete Vibrator Assess - C Y and	Inor Plant Concrete Vibrator 3.5 amp 8kW Pump 8 aeeeper Street Sweeger Light Commercial s 3.5 (L/hr) Light Commercial s 3.5 (L/hr) uck Medium Truck 3.55GVMs128 (L/hr) uck Heavy Truck 12tsGVMs258 (L/hr) ght Vehicles Light Commercial s 3.5 (L/km) uck Medium Truck 3.5tsGVMs128 (L/km) uck Heavy Truck 12tsGVMs128 (L/km) uck Bedouble Bedouble ali Nail Machine Soil Nail Machine	Diesel	2	L/hr	Able Sales, Typical Diesel Generator Fuel Efficiency (https://www.ablesales.com.au/blogidiesel-generator-fuel- consumption-chart-in-litres.html)	Conversion of KW to fuel burn rate using average generator efficiencies
any over rung over rung s Litede 2.4 L/hr High Investations and source appoint of the Literation and source appoint on and soure appoint on and source appoint and source appoint on a	anny anny 8 weeper Street Sweeper Light Commercial 4 3.51 (Uhr) usck Medium Truck 3 StrEVMk12t (Uhr) usck Heavy Truck 12tSGVMs22t (Uhr) usck Medium Truck 3 StrEVMk12t (Uhr) usck B-double di Nall Machine Soil Nall Machine	Diesel	1.1	L/hr	Scintex - Concrete Vibrator Poker (https://www.scintex.com.au/products/concrete-vibrator- poker)	Assume 4.7 hp / 3.5 kW desel vibrator. kW converted to fuel burn rate using average genera efficiency.
Upth Vehicles Light Commercial 5 3.51 (Lhr) Diesel 9.760 Lhr Toward Analysis Diesel	Ight Vehicles Light Commercial s 3.5k (Lhr) unck Medium Truck 3.8sc/Mks12t (Lhr) unck Heavy Truck 12sc/Mks12t (Lhr) unck Heavy Truck 12sc/Mks12t (Lhr) ight Vehicles Twin Cab Ute ight Vehicles Light Commercial s 3.5k (Lhrn) unck Medium Truck 3.5sc/Mks12t (Lhrn) unck Medium Truck 3.5sc/Mks12t (Lhrn) unck Heavy Truck 12sc/Mks12t (Lhrn) unck Beduuble oll Nail Machine Soil Nail Machine	Diesel	2.4	L/hr L/hr	resp.://www.acresares.com.au/blog/desel-generator-fuel- consumption-chart-in-litres.html accounts@pmgalea.com.au	Assume equivalent fuel consumption to the same size diesel engine (generator) operating at full loa Supplier value
Market Desk 22.800 Lift Desket 22.800 Lift Desket pipe. <	Incest index of sets within a (jum) tuck Heavy Truck 12tSGVMs2St (L/kr) gift Vehicles Twin Cab Ute gift Vehicles Light Commercial \$ 3.5t (L/km) tuck Medium Truck 3.5tSGVMs12t (L/km) tuck Heavy Truck 12tSGVMs2St (L/km) tuck B-double B-double Soil Nail Machine	Diesel	9.760	L/hr	Transport Authorities Greenhouse Group (TAGG), (2013) Greenhouse Gas Assessment Workbook for Road Projects Transport Authorities Greenhouse Group (TAGC), 20143)	Likm fuel burn rate converted to Lihr conservativ by multiplying by 80km in an hour.
Best Diesel 7.3 U 100km Twin Cab U Twin Cab U Twin Cab U Twin Cab U Diesel 7.3 U 100km Twin Cab U Twin Cab U <td>yht Vehicles Twin Cab Lite yht Vehicles Light Commercial ≤ 3.51 (L/km) nuck Medium Truck 3.51 (G/km) nuck Heavy Truck 1215/GVMs121 (L/km) nuck Heavy Truck 1215/GVMs2251 (L/km) nuck B-double B-double Soil Nail Machine</td> <td>Diesel</td> <td>44.800</td> <td>L/hr</td> <td>Greenhouse Gas Assessment Workbook for Road Projects Transport Authorities Greenhouse Group (TAGG), (2013) Greenhouse Group (TAGG), (2013)</td> <td>by multiplying by 80km in an hour. Likm fuel burn rate converted to Liftr conservative hum mitions hu 91km in</td>	yht Vehicles Twin Cab Lite yht Vehicles Light Commercial ≤ 3.51 (L/km) nuck Medium Truck 3.51 (G/km) nuck Heavy Truck 1215/GVMs121 (L/km) nuck Heavy Truck 1215/GVMs2251 (L/km) nuck B-double B-double Soil Nail Machine	Diesel	44.800	L/hr	Greenhouse Gas Assessment Workbook for Road Projects Transport Authorities Greenhouse Group (TAGG), (2013) Greenhouse Group (TAGG), (2013)	by multiplying by 80km in an hour. Likm fuel burn rate converted to Liftr conservative hum mitions hu 91km in
Uptive/bickes Light Commercial # 3.5t (L/km) Diesel 0.122 L/km Trausof Antico Genetrosa Grage (TAGD) (201) Genetrosa Grage (TAGD) (201) Genetrosa Grage (TAGD) (2013) Genetrosa Grage (TAGD) (2013) Ge	yiht Vehicles Light Commercial s 3.5 (Ukm) uck Medium Truck 3.55(Ukm) ruck Heavy Truck 12tsGVMs12t (Ukm) ruck B-double B-double Gol Nail Machine Soil Nail Machine	Diesel	7.3	L/100km	Projects https://rac.com.au/car-motoringlinfo/car-reviews/four- wheel-drive-utes/toyota-hilux	 -y
Care And Care An	Index in the order with a reaction Heavy Truck 125/GVMs258 (L/km) reak B-double B-double Soil Nail Machine	Diesel	0.122	L/km	Transport Authorities Greenhouse Group (TAGG), (2013) Greenhouse Gas Assessment Workbook for Road Projects Transport Authorities Greenhouse Group (TAGG) (2013)	
Topolar and the second	rcuk B-double B-double oil Nail Machine Soil Nail Machine	Diesel	0.560	L/km	Greenhouse Gas Assessment Workbook for Road Projects Transport Authorities Greenhouse Group (TAGG), (2013) Greenhouse Gas Assessment Windowic for Road	
vicitionicularity control part to an and the second	oil Nail Machine Soil Nail Machine	Diesel	0.65	L/km	Projects https://www.truck.net.au/system/files/industry- resources/TAPs/k20- %20Tartik/20Itmge/files/industry-	
		Diesel	26.0	L/hr	Alias Copco Technical Specification (https://ee-industry- equipment.com/deposit/3344_f2440.pdf, accessed 30th	Equipment equivalent to Atlas Copco D9 per advi from project engineer. Fuel burn rate taken from

8kW / 10kVA	8	0.8	0.40	1.3	0.33	1.8	0.30	2.	4 0.30
10kW / 12kVA	10	0.9	0.36	1.6	0.32	2.2	0.29	2.	9 0.29
12kW / 15kVA	12	1.1	0.37	1.9	0.32	2.7	0.30	3.	5 0.30
16kW / 20kVA	16	1.5	0.38	2.5	0.31	3.6	0.30	4.	3 0.30
20kW / 25kVA	20	1.8	0.36	3.1	0.31	4.5	0.30		5 0.30
24kW / 30kVA	24	2.2	0.37	3.7	0.31	5.4	0.30	7.	2 0.30
32kW / 40kVA	32	2.9	0.36	5	0.31	7.2	0.30	9.	5 0.30
lokW / 50kVA	40	3.6	0.36	6.2	0.31	9	0.30	1	2 0.30
30kW / 75kVA	60	5.4	0.36	9.4	0.31	13.5	0.30	1	3 0.30
BOKW / 100kVA	80	7.2	0.36	12.5	0.31	18	0.30	2	4 0.30
120kW / 150kVA	120	10.8	0.36	18.8	0.31	27	0.30	3	5 0.30
160kW / 200kVA	160	14.4	0.36	25	0.31	36	0.30	4	3 0.30
200kW / 250kVA	200	18	0.36	31.2	0.31	45	0.30	0	0.30
280kW / 350kVA	280	25.2	0.36	43.7	0.31	63	0.30	8	4 0.30
400kW / 500kVA	400	36	0.36	62.4	0.31	90	0.30	12	0.30
Source: https://www.ablesales.com.au/blog/	liesel-generator-fuel-	consumption-	chart-in-litres.html						

Appendix A - Calculation sheets - Emission Factors

Emission Factors

Fuel combusted	Energy content factor		Emis	sion factor ((kg CO2-e/0	GJ)		Source	Date Checked /
	GJ/kL	CO2	CH4	N2O	Scope 1	Scope 2	Scope 3	000100	Updated
Sasoline (other than for use as fuel in an aircraft)	34.20	67.40	0.02	0.20	67.62	0.00	3.60	NGAF- Tables 4 and 45	26/07/2022 SC
Diesel oil	38.60	69.90	0.01	0.50	70.41	0.00	3.60	NGAF- Tables 4 and 45	26/07/2022 SC
Liquefied petroleum gas	26.20	60.20	0.50	0.30	61.00	0.00	3.60	NGAF- Tables 4 and 45	26/07/2022 SC
Diesel oil - Euro iv or higher (Heavy vehicles conforming to Euro design stand	38.60	69.90	0.07	0.40	70.37	0.00	3.60	NGAF- Tables 4 and 45	26/07/2022 SC
2.3 Indirect emissions from electricity									
State or Territory			Emiss	ion factor (I	kg CO2-e/k	Wh)		Source	Date Checked /
,		CO2	CH4	N2O	Scope 1	Scope 2	Scope 3		Updated
Victoria		NA	NA	NA	0.00	0.91	0.10	NGAF- Table 46	26/07/2022 SC
Appendix 4 - Emissions from waste disposal to landfill and wastewater treatment	1								
Waste type			Emiss	ion factor (t	CO2-e/t wa	aste)		Source	Date Checked /
		CO2	CH4	N2O	Scope 1	Scope 2	Scope 3	000100	Updated
		NA	NA	NA	NA	NA	1.6	NGAF- Table 49	26/07/2022 SC
Municipal solid waste		210	NA	NA	NA	NA	1.3	NGAF- Table 49	26/07/2022 SC
Municipal solid waste Commercial and industrial waste		INA							

Emission factor	NGAF 2021 (Departm	e	Australia	a's emission:	s projection	from (Dep	artment of	Industry, Science, Ener	gy and Resour, 2021)											Linear in	terpolation f	rom 2030	10 2050													
Emission ractor	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	1 20	032 2	033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050					
Victoria's Scope 2 emisssions factors (kg CO2-e/kWh)	0.91	0.68	0.6	0.57	0.58	0.56	0.54	0.5	0.39	9 0.3	87 0.3	.35	0.33	0.31	0.30	0.28	0.26	0.24	0.22	0.20	0.19	0.17	0.15	0.13	0.11	0.09	0.07	0.06	0.04	0.02	0					
Victoria's Scope 2 and 3 combined emisssions factors (kg CO2-e/kWh)	1.01	0.75	0.66	0.63	0.65	0.63	0.59	0.55	0.44	4 0.4	2 0.4	.40	0.38	0.36	0.34	0.32	0.29	0.27	0.25	0.23	0.21	0.19	0.17	0.15	0.13	0.11	0.08	0.06	0.04	0.02	0					
Victoria's Scope 3 emisssions factors (kg CO2-e/kWh)	0.10	0.07	0.06	0.06	0.07	0.07	0.05	0.05	0.0	5 0.0	0.0	.05	0.05	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.00					
																			Scenar	rios are fra	med conside	ering CSIR	O's Electric	vehicle pro	jections 202	21						/ / /	1		/ /	
Diesel transport emission factor percentage change scenarios	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	1 20	032 2	033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	205
Reference	100%	99%	98%	97%	95%	94%	93%	92%	91%	6 90	% 89	9%	88%	86%	85%	84%	83%	82%	81%	80%	78%	77%	76%	75%	74%	73%	72%	70%	69%	68%	67%	66%	65%	64%	63%	6
Low	100%	98%	95%	93%	91%	89%	86%	84%	829	6 80	% 77	7%	75%	73%	70%	68%	66%	64%	61%	59%	57%	55%	52%	50%	48%	45%	43%	41%	39%	36%	34%	32%	30%	27%	25%	2
High	100%	5 100%	100%	100%	100%	100%	100%	100%	100%	6 100	% 100	0%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	10
Sources:										_																										
Notice of Constant and Constant (NOAE) (Doce the set of induction	dense Freedorie Dese		×																																	

tional Greenhouse Account Factors (NGAF) - (Department of Industry, Science, Energy and Resources, 20 stralia's emissions projection from (Department of Industry, Science, Energy and Resources, 2021)

Table 37: Indirect Scope 2 and 3 combined emissions factors, tonnes CO_2 -e per MWh

	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Australia, all grid											
connected	0.77	0.72	0.65	0.60	0.56	0.53	0.49	0.47	0.43	0.37	0.34
NEM	0.79	0.75	0.66	0.61	0.57	0.54	0.50	0.47	0.43	0.37	0.34
NSW/ACT	0.82	0.76	0.70	0.64	0.59	0.53	0.46	0.40	0.34	0.27	0.19
QLD	0.86	0.81	0.75	0.73	0.69	0.64	0.61	0.60	0.59	0.58	0.57
SA	0.34	0.26	0.25	0.21	0.18	0.19	0.17	0.16	0.13	0.11	0.10
VIC	0.95	0.92	0.75	0.66	0.63	0.65	0.63	0.59	0.55	0.44	0.42
TAS	0.11	0.10	0.10	0.08	0.08	0.10	0.09	0.08	0.05	0.03	0.02
SWIS	0.69	0.59	0.58	0.55	0.53	0.50	0.46	0.45	0.43	0.40	0.39
NWIS	0.58	0.57	0.58	0.56	0.55	0.54	0.51	0.51	0.51	0.51	0.51
DKIS	0.59	0.59	0.50	0.47	0.46	0.45	0.43	0.41	0.39	0.35	0.32

Table 36: Indirect Scope 2 emissions factors, tonnes CO2-e per MWh

	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Australia, all grid											
connected	0.70	0.65	0.58	0.54	0.51	0.48	0.44	0.42	0.39	0.34	0.31
NEM	0.70	0.67	0.59	0.54	0.51	0.48	0.44	0.42	0.38	0.33	0.30
NSW/ACT	0.75	0.70	0.64	0.59	0.54	0.48	0.42	0.37	0.31	0.24	0.18
QLD	0.75	0.71	0.66	0.63	0.60	0.55	0.53	0.52	0.51	0.50	0.50
SA	0.29	0.21	0.21	0.18	0.15	0.16	0.14	0.13	0.11	0.09	0.08
VIC	0.85	0.83	0.68	0.60	0.57	0.58	0.56	0.54	0.50	0.39	0.37
TAS	0.10	0.09	0.09	0.07	0.08	0.08	0.08	0.07	0.04	0.02	0.02
SWIS	0.64	0.55	0.54	0.51	0.49	0.47	0.43	0.42	0.41	0.38	0.37
NWIS	0.56	0.56	0.57	0.55	0.54	0.53	0.50	0.50	0.50	0.50	0.50
DKIS	0.54	0.53	0.46	0.43	0.42	0.41	0.40	0.38	0.35	0.32	0.29

Table 3: Fuel combustion emission factors – liquid fuels including certain petroleum bas products for stationary energy purposes

Fuel combusted	factor (GJ/kL unless	(relevant ox	kg CO2-e/GJ	incorporate
	otherwise indicated)	CO2	CH4	N₂O
Petroleum based oils (other than petroleum based oil used as fuel), eg lubricants	38.8	13.9	0.0	0.0
Petroleum based greases	38.8	3.5	0.0	0.0
Crude oil including crude oil condensates	45.3 GJR	69.6	0.08	0.2
Other natural gas liquids	46.5 GJ/t	61.0	0.08	0.2
Gasoline (other than for use as fuel in an aircraft)	34.2	67.4	0.2	0.2
Gasoline for use as fuel in an aircraft (avgas)	33.1	67	0.2	0.2
Kerosene (other than for use as fuel in an aircraft)	37.5	68.9	0.01	0.2
Kerosene for use as fuel in an aircraft (aviation turbine fuel)	36.8	69.6	0.02	0.2
Heating oil	37.3	69.5	0.03	0.2
Diesel oli	38.6	69.9	0.1	0.2
Fuel oil.	39.7	73.6	0.04	0.2
Liquefied aromatic hydrocarbons	34.4	69.7	0.03	0.2
Solvents: mineral turpentine or white spirits	34.4	69.7	0.03	0.2
Liquefied petroleum gas	25.7	60.2	0.2	0.2
Naphtha	31.4	69.8	0.01	0.01
Petroleum coke	34.2 GJ/t	92.6	0.08	0.2
Refinery gas and liquids	42.9 GJ/t	54.7	0.03	0.03
Refinery coke	34.2 GJ/t	92.6	0.08	0.2
Petroleum based products other than mentioned in the items above	34.4	69.8	0.02	0.1
Biodiesel	34.6	0.0	0.08	0.2
Ethanol for use as a fuel in an internal combustion engine	23.4	0.0	0.08	0.2
Biofuels other than those mentioned in the items above	23.4	0.0	0.08	0.2

Energy and Resources National Inventory Report). Note: AIL EFS supressed in terms of energy measured as gross catorific equivalents (GCV). Biofuels CO: emission factors assume emissions and removals due to the harvesting and regrowth of biomass and

	EF for scope
Liquid Fuels combusted	kg CO2-e/GJ
Petroleum based oils (other than petroleum based oil used as fuel, e.g. lubricants)	3.6
Petroleum based greases	3.6
Crude oil including crude oil condensates	3.6
Other natural gas liquids	3.6
Gasoline (other than for use as fuel in an aircraft)	3.6
Gasoline for use as fuel in an aircraft (aviation gasoline)	3.6
Kerosene (other than for use as fuel in an aircraft)	3.6
Kerosene for use as fuel in an aircraft (aviation turbine fuel)	3.6
Heating oil	3.6
Diesel oil	3.6
Fuel all	3.6
Liquefied aromatic hydrocarbons	3.6
Solvents if mineral turpentine or white spirits	3.6
Liquefied Petroleum Gas	3.6
Naphtha	3.6
Petroleum coke	3.6
Refinery gas and liquids	3.6
Refinery coke	3.6
Petroleum based products other than mentioned in items above	3.6
Biofuels	NE

Note: Scope 3 factors for biofuels such as biodiesels and ethanol are highly dependent on individual plant and p characteristics, and therefore have not been estimated.

1989/90	1.24	345	0.20	55	1.44	400
1994/95	1.22	340	0.14	38	1.36	378
1999/2000	1,33	370	0.12	33	1.45	404
2004/05	1.23	342	0.10	28	1.33	370
2005/06	1.23	341	0.09	24	1.31	365
2006/07	1.22	340	0.10	28	1.32	367
2007/08	1.22	338	0.13	37	1.35	375
2008/09	1.22	339	0.14	39	1.36	378
2009/10	1.20	334	0.15	42	1.35	376
2010/11	1,19	330	0.15	42	1.34	371
2011/12	1.18	329	0.15	43	1.34	371
2012/13	1.16	321	0.14	40	1.30	361
2013/14	1.11	309	0.12	34	1.24	343
2014/15	1.07	297	0.10	28	1.17	325
2015/16	1.07	297	0.09	24	1.16	322
2016/17	1.07	296	0.10	27	1.16	323

Financial EF for scope 2 EF for scope 3 Full fuel cycle EF (EF for scope 2 + EF for scope 3 + EF for scope 3)

Financial year	EF for	scope 2	EF for	scope 3	Full fuel cycle EF (EF for scope 2 + EF f scope 3)		
	A	B	c	D	E	F	
	kg CO2- e/kWh	kg CO2- e/GJ	kg CO2- e/kWh	kg CO2- e/GJ	kg CO2- e/kWh	kg CO2- e/GJ	
2017/18	0.102	283	0.11	31	1.13	314	
2018/19	0.96	266	0.10	29	1.06	295	
Latest estimate*	0.91	252	0.10	27	1.00	279	

www.truck.net.au/system/files/industry-resources/TAPs%20-%20Truck%20Impact%20Chart%20March%202018.pdf

55	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065
61%	60%	59%	58%	57%	56%	55%	53%	52%	51%	50%
23%	20%	18%	16%	14%	11%	9%	7%	5%	2%	0%
00%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Table 49: Waste emission factors for total waste disposed to landfill by broad waste stream category

Waste types

Municipal solid waste	Commercial and industrial waste	Construction and demolition waste		
A	в	с		
1.6	1.3	0.2		

Document prepared by

Aurecon Australasia Pty Ltd

ABN 54 005 139 873 Aurecon Centre Level 8, 850 Collins Street Docklands, Melbourne VIC 3008 PO Box 23061 Docklands VIC 8012 Australia

T +61 3 9975 3000
 F +61 3 9975 3444
 E melbourne@aurecongroup.com
 W aurecongroup.com

